Рафаэля (Рафаэль Санти, 1483-1520) стали основой для будущих работ Кеплера, Жерара Дезарга (1591-1661), Пьера Ферма (1601-1665) и Блеза Паскаля (1623-1662), всех прямых или косвенных предшественников Лейбница. Работы Гаусса, Дирихле и Римана основаны на том же геометрическом методе [5].
Отличительной чертой геометрических работ Пачоли и Леонардо было господство принципа пяти платоновых фигур, сформулированного Платоном (ок. 427-347 до н.э.) в философском диалоге «Тимей» [6]. Он содержит доказательство того, что в видимом («эвклидовом») пространстве только цять видов правильных многоугольников могут быть построены методами синтетической геометрии. Это: 1) тетраэдр, 2) куб, 3) октаэдр, 4) 12-сторонний додекаэдр и 5) 20-сторонний икосаэдр. 1), 3) и 5) имеют грани, которые являются равносторонними треугольниками; додекаэдр имеет грани, являющиеся правильными пятиугольниками. Пачоли выстроил доказательство этой теоремы в своей работе «Божественная пропорция» («Divine Proportione», 1494). Более строгое доказательство было дано Леонардом Эйлером (1707-1783). Это доказательство занимало центральное место среди достижений Эйлера в области топологии, которые были продолжением аналитических положений Лейбница. В этой работе с легкостью доказано, что каждая из оставшихся четырех фигур Платона может быть получена из додекаэдра. На основании этого было доказано, что Золотое сечение, позволяющее геометрически строить правильный пятиугольник или додекаэдр, характеризует уникальность пяти платоновых тел.