Но величайшим мастером головоломок был американский гений-самородок Сэм Лойд (1841–1911 гг.), который еще мальчишкой имел вполне приличный заработок, придумывая новые головоломки и усовершенствуя старые. В книге «Сэм Лойд и его головоломки: автобиографический обзор» он признает, что некоторые из его первых головоломок были созданы по заказу владельца цирка и фокусника П. Т. Барнума:

«Много лет назад, когда 'Цирк Барнума' был поистине 'величайшем зрелищем на Земле', знаменитый шоумен заказал мне серию головоломок, предназначенных быть призами в рекламной кампании. Под названием 'Вопросы сфинкса' они приобрели широкую известность из-за крупных призов, предлагавшихся тем, кто сумеет на них ответить».

Интересно, что эта «автобиография» была написана в 1928 году, через 17 лет после смерти Лойда. Свое пристрастие к головоломкам Лойд передал своему сыну, также Сэму, который и был подлинным автором книги «Сэм Лойд и головоломки» и прекрасно знал, что всякий, кто ее купит, будет ошибочно полагать, что ее автор — более известный Сэм Лойд-старший.

Самой знаменитой головоломкой Сэма Лойда стал викторианский эквивалент кубика Рубика — игра в 15, которую и поныне можно встретить в игрушечных лавках. Пятнадцать квадратных шашек с номерами от 1 до 15 находятся в квадратной коробочке размером 4?4. Цель игры состоит в том, чтобы, передвигая шашки в коробочке (но не вытаскивая их), расположить шашки по порядку номеров. В головоломке Лойда «15–14» начальное расположение шашек в коробочке было таким, как на рис. 14. Сэм Лойд предложил значительное вознаграждение тому, кто сумеет решить задачу-головоломку, передвинув шашки (проделав серию ходов) «14» и «15» так, чтобы они расположились в правильном порядке. Сын Лойда описал тот ажиотаж, который вызвала эта «механическая», а на самом деле математическая головоломка:

«Премия в 1000 долларов тому, кто первым правильно решит эту головоломку, так и не была никем востребована, хотя тысячи людей утверждали, будто им удалось добиться желаемого. Люди теряли из-за головоломки «15–14» покой и сон. Рассказывали о владельцах лавок, которые забывали открывать свои заведения, о знаменитом священнике, который простоял всю зимнюю ночь под уличным фонарем, пытаясь припомнить, как ему удалось решить задачу. Самое удивительное во всех этих историях о головоломке «15–14» было то, что никто из «решивших» ее не мог вспомнить последовательность ходов, которая привела к победе. Рассказывали, будто лоцманы сажали суда на мели, а машинисты проскакивали без остановки железнодорожные станции. Известный балтиморский издатель рассказывал, как однажды он отправился на ленч и обнаружил, что сотрудники редакции и типографии самозабвенно играют в пятнадцать с полуночи, гоняя по тарелке кусочки пирога».

 Рис. 14. Карикатура с изображением мании, порожденной «Игрой в 15» Сэма Лойда (головоломки, в которой все шашки, кроме двух последних, расположены по порядку)

Лойд был абсолютно уверен в том, что ему не придется выплатить объявленную премию в 1000 долларов, поскольку достоверно знал, что невозможно расположить шашки с номерами «14» и «15», не нарушив при этом правильного расположения каких-нибудь других шашек. Так же, как математик может доказать неразрешимость какого-нибудь уравнения, Лойд мог доказать, что предложенная им головоломка не имеет решения.

Доказательство Лойда начиналось с определения величины, которая служила мерой беспорядка в расположении шашек — параметра беспорядка Dp. Параметр беспорядка данного расположения шашек равен числу пар шашек, у которых больший номер предшествует меньшему, т. е. номера идут в неправильном, обратном, порядке. Для правильного расположения шашек, как на рис. 15a, Dp = 0.

а) Dp = 0 б) Dp = 6 в) Dp = 12

Рис. 15. Передвигая шашки внутри коробочки (но не извлекая их из нее), можно создавать различные неупорядоченные расположения чисел. Для каждого расположения можно количественно измерить беспорядок, вводя параметр беспорядка Dp

Начав с правильного расположения шашек и передвигая их в коробочке (но не вынимая из нее), сравнительно легко получить расположение, представленное на рис. 15б. В нем шашки идут в правильном порядке до тех пор, пока мы не достигнем шашек 12 и 11. Ясно, что шашка с номером 11 должна предшествовать шашке 12, поэтому шашки в этой паре расположены в обратном порядке. Полный список тех пар, в которых шашки расположены в обратном порядке таков: (12,11), (15,13), (15,14), (15,11), (13,11) и (14,11). Таким образом, при расположении шашек, показанном на рис. 15б, имеется 6 пар с обратным расположением шашек, и Dp = 6. (Заметим, что шашка 10 соседствует с шашкой 12. Это явно неверно, но такое расположение номеров шашек тем не менее не является обратным, поэтому эта пара шашек не вносит вклада в параметр беспорядка.) Еще несколько ходов, и мы приходим к расположению шашек, представленному на рис. 15в. Составив полный список пар шашек с номерами, идущими в обратном порядке, мы обнаружим, что Dp = 12. Важно заметить, что во всех трех случаях а, б и в, значения параметра беспорядка четны (0, 6 и 12). Действительно, если вы начнете с правильного расположения шашек и будете передвигать их, не вынимая из коробочки, то утверждение о четности параметра беспорядка останется в силе. После любого числа ходов, при расположении шашек с пустой клеткой в правом нижнем углу, значение Dp всегда будет четным.

Иначе говоря, четное значение параметра беспорядка — свойство всех расположении, получаемых из исходного правильного расположения. В математике свойство, которое сохраняется независимо от того, какие действия производятся над объектом, называется инвариантом.

Но если вы проанализируете расположение шашек в головоломке Лойда «15–14», то обнаружите, что значение параметра беспорядка для нее равно единице: Dp = 1, так как только у одной пары с номерами 13 и 15 номера идут в обратном порядке. В головоломке Лойда параметр беспорядка имеет нечетное значение! Но мы знаем, что у любого расположения, полученного из правильного исходного расположения, значение параметра порядка четно. Отсюда следует заключение: расположение шашек в головоломке Лойда «15–14» не может быть получено из правильного исходного расположения, и наоборот, расположение шашек в головоломке Лойда не может быть сведено к правильному расположению. За премию в 1000 долларов Лойд мог быть абсолютно спокоен!

Головоломка Лойда и параметр беспорядка убедительно демонстрируют силу инварианта. Инварианты дают математикам важную стратегию, когда требуется доказать, что один объект невозможно преобразовать в другой. Например, в настоящее время большой интерес вызывает изучение узлов, и специалисты по теории узлов, естественно, пытаются выяснить, можно или нет преобразовать один узел в другой, изгибая и образуя петли, но не разрезая его. Чтобы ответить на этот вопрос, они пытаются найти какое-нибудь свойство исходного узла, которое сохранялось бы при любом изгибании и образовании петель, т. е. инвариант узла. Затем они вычисляют такой же инвариант для второго узла. Если значения инвариантов оказываются различными, то из этого с необходимостью следует вывод о том, что первый узел невозможно преобразовать во второй.

До того, как первые шаги в этом направлении были сделаны Куртом Рейдемейстером в 20-х годах XX века, доказать, что один узел не может быть преобразован в другой, было невозможно. Иначе говоря, до открытия инвариантов узлов было невозможно доказать, что узел «бантиком» невозможно преобразовать в рифовый узел, простой узел или даже простую петлю без какого бы то ни было узла вообще.

Понятие инвариантного свойства занимает центральное место во многих других математических

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату