воздухе. На кадрах высокоскоростной съемки (рис. 4.11) видно, как на внутренней поверхности лайнера начинают расти «пальцы», а потом образуется «звезда», разрезающая объем сжатия, на чем процесс усиления поля и заканчивается. В опытах автора (о них речь впереди) лайнер выполнял две функции, причем главной являлось формирование ударной волны при ударе лайнера о цилиндрическое тело. Ударной волне тоже следовало быть цилиндрической, а, значит, в лайнере — недопустимы значительных размеров нестабильности. «Поджатие» же поля было приятным, но не решающим обстоятельством.
Привыкшие достигать совершенства, специалисты ВНИИЭФ добились того, что в кинетическую энергию лайнера передавалось до 30 % химической энергии ВВ (теоретически возможный уровень — 32 %). Но химическая энергия распределена по большому объему заряда ВВ, а кинетическая энергия лайнера в конце процесса кумулируется в полости небольших размеров, что и позволило достигнуть рекордного значения плотности энергии магнитного поля (4·107 Дж/см3), на несколько порядков превышающего плотность химической энергии в бризантных ВВ.
Но даже если подавить нестабильности, лайнер все равно будет остановлен магнитным давлением: оно возрастает быстрее, чем гидродинамическое давление в его веществе. Площадь области, охватываемой лайнером, убывает обратно пропорционально квадрату радиуса, а значит, в той же пропорции возрастает индукция поля; для магнитного же давления эта зависимость еще сильнее — оно пропорционально квадрату индукции, то есть — обратно четвертой степени радиуса! Закон возрастания давления гидродинамических сил куда слабее — оно всего лишь обратно пропорционально логарифму радиуса. Из этого следует, что магнитное поле, пусть даже очень слабое вначале, неизбежно станет «сильнее» взрыва и остановит движение лайнера к оси. Между прочим, чем слабее начальное поле, тем выше может быть магнитная энергия в точке остановки: ведь слабое поле дольше усиливается, а значит, будет остановлено ближе к оси, где гидродинамическое давление выше. В проведенных во ВНИИЭФ опытах давление магнитного поля индукцией в 1000 Тл достигало четырех миллионов атмосфер, что превышало прочностные пределы любых материалов.
Рекордные значения магнитной энергии в лайнерном ИВМГ получают только при очень большом токе запитки, потому что усиление, определяемое отношением начального и конечного радиусов сжатия, в генераторе этого типа невелико.
Взрывомагнитные генераторы всех типов создавались для применения в ядерном оружии, в частности — для энергообеспечения систем нейтронного инициирования, но предпринимались и попытки расширения области их использования.
…В то, что импульсное магнитное поле способно хорошо «нажать» на металлическое тело, читателю до сих пор приходилось «только верить», но желающие могут убедиться в этом. Установка, которую им предстоит собрать, проста (рис. 4.12).
Выдающийся германский физик и математик К. Гаусс (1777–1885) теоретически обосновал возможность достижения неограниченных скоростей метания проводящих тел магнитным полем (именно — теоретически, потому что на практике эти скорости всегда чем-нибудь да ограничиваются). Он показал, что в энергию метаемого тела может быть преобразовано около 7 % энергии тока, протекающего в катушке (что примерно впятеро ниже КПД выстрела заряженного порохом орудия крупного калибра). Но заставить вырвавшиеся из ствола пороховые газы дополнительно ускорить снаряд нельзя, а вот запитать «отработанным» токовым импульсом другую катушку — можно, поэтому идея Гаусса заключалась в разгоне тела при прохождении им последовательности катушек. Максимальная энергия передается метаемому телу, если ток заканчивается в момент достижения телом середины обмотки, но обеспечить синхронную запитку нескольких катушек в домашних условиях сложно: потребуется много конденсаторов, тиристоров для коммутации, линий задержки, а главное — осциллограф, без которого экспериментатор слеп. Так что воспроизведена всего лишь секция пушки Гаусса, как и в «Хохдрукспумпе» — одна из многих.
Главный элемент — катушка. Ее наматывают эмалированным проводом (ПЭВ, ПЭВТЛ) диаметром 0,5–0,8 мм. Каркасом служит обрезок трубки из диэлектрика (подойдет та, что прилагается к пакету с соком или корпус шариковой ручки, главное — чтобы стенки были потоньше) и два диска-ограничителя из любого диэлектрика. Всего надо намотать примерно 500 витков, стараясь, чтобы обмотка была плотной (ее можно уместить в 12–15 слоев).
Другой важный элемент — конденсатор. Как и при намотке катушки, здесь возможна импровизация, но ориентир указать стоит: у автора под рукой оказался японский, полярный, емкостью 4700 мкФ. Допустимое напряжение зарядки должно быть не менее 400В.
Заряжать конденсатор можно и от сети — через диод. Не забудьте для ограничения тока включить последовательно резистор сопротивлением не менее килоОма, иначе «накроются» и диод и конденсатор. 220 В — эффективное напряжение, а пиковое значение его в сети выше. До пикового значения в конечном итоге зарядится конденсатор, и этого должно хватить для удачного опыта, но всегда может потребоваться резерв, поэтому разумно предусмотреть зарядку по схеме удвоения напряжения.
Энергию накопителя коммутируйте на катушку проводом, укрепленным на пластмассовой штанге. При перерывах в работе штангу оставьте в положении, закорачивающем конденсатор (как на фотографии), иначе вас, вернувшегося полным идей за лабораторный стол, может для начала «дернуть» остаточным напряжением. О метаемом теле. Подойдет и обрезок гвоздя, но большую энергию поле отдаст кольцу, поскольку на единицу массы дипольный момент кольца выше. Хорошо «летят» шайбы стального крепежа. Кольцо вставьте внутрь трубки на центраторе — подходящем по диаметру стержне из любого диэлектрика, заостренном на карандашной точилке. Не надо усердствовать, насаживая кольцо, иначе оно может вообще не полететь или «захватить» центратор с собой.
Ну вот и все. Напряжение зарядки будет возрастать достаточно медленно, и контролируя его тестером, вы сможете выбрать значение, при котором решили стрелять. Яркая вспышка, хлопок разряда, за которыми последуют частые щелчки укатившегося безвозвратно кольца, будут вашими первыми впечатлениями. Немного терпения — и вам удастся добиться того, на что не была способна установка «водяной» кумуляции: пробить метаемым телом алюминиевую фольгу…
…Профессор В. Соловьев с кафедры боеприпасов МГТУ попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе (рис. 4.13). Лететь они могли на небольшой высоте, «копируя» рельеф местности, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: если поражающие элементы пробивали ее корпус, чувствительные датчики формировали сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Взрыв с энерговыделением в сотни килотонн не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности автор испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше — семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но сборка с плутонием не будет