так, что если инициировать этот конус на вершине, то к его основанию придет детонационная волна сферической формы

А если точек — несколько десятков, да еще они должны равномерно покрывать всю сферическую поверхность заряда? Такая задача решается с применением методов геометрии Римана. Элемент разводки выглядит как на рис. 3.10, и не на всяком станке, даже — с числовым программным управлением, его можно изготовить, зато применение разводки позволило существенно уменьшить диаметры зарядов, по сравнению с первыми образцами, в которых для тех же целей использовались детонационные линзы. Кроме того, для заряда с разводкой необходимы всего несколько электродетонаторов в специальных, плоских розетках (рис. 3.11), в то время как для каждого «линзового» заряда их требуются десятки (рис. 3.12).

Рис. 3.11 Детали боевого блока: носовая часть и розетки электродетонаторов

…Как-то автору потребовалось сформировать сходящуюся к оси цилиндрическую волну. Конечно, восемь использованных им электродетонаторов не были «товарами народного потребления» из тех, что используют в забоях и штреках. Все восемь были соединены последовательно, но, несмотря на то, что запускающий их импульс максимально форсировали, данные скоростной съемки показали, что они не сработали одновременно (рис. 3.13). Для устройства автора такое катастрофой не явилось: исследуемое явление не было очень уж чувствительно к симметрии сжатия. Ядерный заряд в аналогичной ситуации слегка «недодал» бы энерговыделения: отклонение формы сборки от шаровой увеличило бы потери нейтронов.

Рис. 3.12 Макет, предназначенный для демонстрации экскурсантам принципа имплозии, оснащен несколькими десятками «детонаторов». Натурный заряд такого типа требует значительно большего энергообеспечения системы инициирования и менее надежен по сравнению с устройством, в котором используется многоточечная детонационная разводка

Первые «атомные» электродетонаторы срабатывали от накаливания током тончайшей проволочки: от нее воспламенялась, а затем детонировало инициирующее ВВ, передавая детонацию бризантному. Была до тонкостей «вылизана» технология изготовления таких детонаторов, и все равно готовые изделия «калибровали», выбирая те, которые минимально отличались друг от друга по параметрам. Такие образцы объединяли в «боекомплект» и хранили в специальных опломбированных контейнерах. Потом от детонаторов с мостиком накаливания отказались по соображениям безопасности: из-за наличия инициирующего ВВ они могли сработать при нагревании, да и токовые импульсы от разного рода наводок могли привести к подрыву и — в самом безобидном случае — к рассеиванию плутония, каковое к приятным обстоятельствам никак не отнесешь. Поэтому перешли на «безопасные» детонаторы: в них нет инициирующего ВВ, а формирует в бризантном ВВ ударную волну, трансформирующуюся в детонационную, канал высоковольтного разряда. Понятно, что для срабатывания таких детонаторов нужно больше энергии, чем для мостиковых, но — безопасность превыше всего!

Рис. 3.13 Верхний ряд, снимки 1 и 2: цилиндрическая имплозия. Там, где детонационные волны сталкиваются, давление и температура значительно выше, поэтому области столкновений на снимках ярко светятся. Измерив по фотографии расстояние между центром точки инициирования и границей такой области и зная скорость детонации ВВ, можно определить, какое время прошло с момента инициирования до столкновения волн. Электродетонатор, находящийся в позиции, соответствующей положению часовой стрелки «полтретьего», сработал раньше других (примерно на 0,4 микросекунды): для этой точки инициирования упомянутое расстояние больше среднего значения. Начавшаяся раньше детонация «успела» расширить свой сектор за счет соседей и раньше «толкнула» находящийся в центре объект, нарушив симметрию сжатия. От этого опыта остался и «свидетель» — медный электрод (справа), на обратной поверхности которого, в местах столкновения детонационных волн, заметны откольные явления. Такие же наглядные снимки сферической имплозии получить невозможно, поэтому внутри метаемого взрывом шарового слоя размещается «башня» с множеством контактных датчиков различной длины (нижний левый снимок). Сжимаемый имплозией шаровой слой последовательно замыкает эти датчики, что дает возможность, зарегистрировав моменты замыкания, определить элементы движения слоя. Левее — детонаторы, применявшиеся в ядерных зарядах: вверху — мостиковый, ниже — высоковольтные, не содержащие инициирующего ВВ. Справа — контейнер для боекомплекта

…Остается доделать всякую ерунду: завинтить крышки, подключить кабели, ведущие к розеткам электродетонаторов (рис. 3.14)… Впрочем, что значит — «ерунду»? Операции при сборке «авиационной автоматики» только одной категории — «ответственные»! Выполняются они «тройкой». Один громко, с внятной артикуляцией, зачитывает пункт инструкции: «Затянуть гайку, позиция… ключом позиция… с моментом…». Второй повторяет услышанное, берет поименованные в соответствующих позициях инструкции гайку и ключ, снабженный измерителем момента, «затягивает». Третий контролирует правильность зачитывания, повторения, соответствие «позиций» и показания измерителя момента. Потом все трое расписываются в соответствующей графе за проведенную операцию (одну из многих тысяч подобных), и каждый знает: в случае чего — «следствие, протокол, отпечатки пальцев…» Таинство производило сильное впечатление на тех, кому довелось быть его свидетелями, в том числе — на С. Королева, который позже внедрил аналогичный порядок и в космической отрасли.

Работа заряда начинается с момента, когда мощный высоковольтный импульс одновременно подрывает все детонаторы. Огоньки детонации с постоянной скоростью (около 8 км/с) разбегаются по канавкам, а пройдя их — ныряют в отверстия и одновременно во множестве точек «заводят» заряд (рис. 3.96). Далее следует сходящийся внутрь [50] взрыв (рис. 3.9в), который сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии исчезает полость (рис. 3.9 г), а плотность его — увеличивается, сжимаемая сборка «проскакивает» критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.

Рис. 3.14 Верхний и центральный ряды — иллюстрации процесса монтажа первого имплозивного заряда «Гаджет» (заимствованы из подлинной американской инструкции). 1 — детали из плутония; 2 — полоний-бериллиевый источник нейтронов; 3 — герметизирующая прокладка рифленого золота; 4 — капсула из урана-238; 5 — сегменты ВВ; 6 — элемент шарового слоя из алюминия. Конструкция ядерного заряда «Гаджета» иная, чем изображенная на анимации (рис. 3.9): в нем нет замедлителя нейтронов, вместо него плутониевый шар окружен слоями отвального урана и алюминия. Импеданс алюминия повыше, чем у продуктов детонации ВВ, поэтому после имплозии давление ударной волны в нем повышается (рис. 1.15). Оно повышается еще раз при переходе волны в уран, одна только плотность которого выше, чем у алюминия более чем в семь раз! Массивный шаровой слой отвального урана повышает также инерционность сборки, «давая» плутонию больше времени для деления (торцевые поверхности капсулы 4 — сферические, одного радиуса с этим слоем). Нижний ряд, слева: процесс монтажа. Снимок явно
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

4

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату