сущности механизмов, но все же пара была лишь иным выражением математического понятия связи, сама по себе не представляя материального тела. Это понял и сам конструктор, принявший за элементарный механизм шарнирный четырехзвенник. По.следнее не решило задачи: очевидна была неэлементарность и сложность структуры четырехзвенника.

Несомненно, что новые структурные идеи были связаны с анализом четырехзвенника, но дело в том, что Ассур увидел здесь то, чего не видели его предшественники: двухповодковую группу как основной структурный элемент исследуемого механизма. Логически развивая эту мысль, он пришел к выводу, что такая двухповодковая группа пригодна также для построения новых механизмов. Так были заложены основы теории построения кинематических цепей и найден их исходный генетический элемент: двухповодковая пара, состоящая из двух звеньев и одного сочленения.

Эта группа может иметь несколько форм в зависимости от того, в какую пару должны входить свободные концы поводков и какую форму имеет связывающая поводки пара. Каждая из них может быть соответственно шарниром или же ползунком (поступательно движущимся звеном), если радиус шарнира становится бесконечно большим. При этом можно получить всего пять вариантов двухповодковой группы: с тремя шарнирами, с одним средним ползунком, с одним крайним ползунком, с двумя крайними ползунками, с одним крайним и одним средним ползунками.

Если взять двухповодковую группу в одной из ее возможных модификаций и закрепить две крайние пары на одном из звеньев механизма или на неподвижной плоскости, то группа образует жесткий треугольник нулевой подвижности. Рассуждая по аналогии, ученый пришел к выводу о том, что совершенно не обязательно прикреплять исследуемую группу к механизму. Достаточно будет присоединить ее к неподвижной плоскости, и если она образует тогда жесткую систему, то можно считать ее пригодной для образования механизмов.

Сложнее обстояло дело с трехповодковыми группами. Если прикрепить свободные шарниры к неподвижной плоскости, то образуется жесткая система — замкнутая кинематическая цепь нулевой подвижности. Если же свободные шарниры присоединить к звеньям механизма принужденного движения или в частном случае, одним свободным шарниром к звену, вращающемуся около некоторого неподвижного центра, а прочими свободными шарнирами к жесткому звену, то получится механизм с одной степенью свободы. При этом последовательным  многократным  присоединением трехповодковой группы можно образовать новые механизмы из уже существующих.

Для создания более сложных групп ученый предложил так называемый метод развития поводка: на одном из поводков строится жесткий треугольник с двумя свободными шарнирами. Продолжая эту же операцию — присоединив один из поводков трехповодковой группы, можно получить четырехповодковую группу, а из четырехповодковой — пятиповодковую. Но последняя имеет уже свою характерную особенность. Она имеет в своем составе три жестких треугольника, из которых два имеют по два поводка, а средний — один поводок. Следовательно, результаты развития разных по своему положению поводков не будут идентичными.

Будем сперва развивать один из поводков, присоединенных к крайнему жесткому треугольнику. Такая операция дает цепи, которые были названы открытыми простыми цепями нормального типа. Присоединяя такие цепи к механизму, мы будем получать новые механизмы более сложной структуры. Если затем переносить поводки с крайних звеньев на средние, то первоначальная цепь или распадается на более простые, или же в результате такого переноса образуются цепи нового вида с избыточными или недостающими поводками. Последние Ассур не исследовал, между тем его последователи показали, что такие цепи могут давать новые типы механизмов.

Для образования новых механизмов был разработан способ наслоения, заключающийся в последовательном присоединении к некоторому механизму, принятому за основной, ряда цепей. В качестве основного механизма использовался кривошип, т. е. звено, шарнирно связанное с жестким основанием и имеющее свободный элемент шарнира на другом конце, который может описать полную окружность вокруг закрепленного центра.

Все механизмы, образуемые из простого кривошипа с помощью наслоения простых многоповодковых цепей нормального типа, были названы механизмами первого класса. При этом наиболее сложная группа, входящая в состав механизма, определяет его порядок. Так как большинство механизмов состоит из кривошипа и подсоединенных к нему двухповодковых групп, то, следовательно, все они относятся к первому классу и соответствуют второму порядку. К первому классу третьему порядку относится, в частности, кулиса Стефенсона, где трехповодковая группа встречается один раз.

Вернемся к нормальной пятиповодковой цепи и вместо одного из крайних поводков разовьем единственный поводок среднего звена. В результате получим незамкнутую кинематическую цепь, состоящую из жестких треугольников и шарнирно присоединенных к ним поводков. При этом звено, выпускающее разветвление, совершенно лишено поводков, соседние с ним звенья имеют по два поводка. В дальнейшем можно присоединить один или оба поводка звена, шарнирно связанного со средним.

Цепи, полученные в результате описанных операций, были названы сложными открытыми цепями, многоповодковыми, нормального типа. Такая цепь, присоединенная всеми свободными шарнирами поводков к жесткому звену и лишенная затем одного поводка или же присоединенная одним из свободных шарниров к кривошипу, а всеми прочими к жесткому звену, дает начало механизму.

Механизмы, которые содержат в своем составе сложные многоповодковые цепи нормального вида, выли названы механизмами второго класса. Порядок механизма определяется количеством бесповодковых звеньев, входящих в состав цепи. Так как любая цепь первого класса не имеет жестких бесповодковых звеньев, то на основе этого принципа можно было бы назвать ее цепью второго класса нулевого порядка.

Одним из наиболее существенных свойств сложней открытой цепи нормального вида является то, что при перемещениях одного поводка она распадается на несколько открытых цепей нормального вида. Таким образом, сложная открытая многоповодковая цепь может быть выделена из состава механизма в качестве одной из тех групп, на которые он распадается.

Построив изложенным способом цепи первого и второго классов, можно продолжить усложнение изучаемых цепей. Пусть задана некоторая простая открытая нормальная цепь, всеми поводками прикрепленная к основанию и поэтому представляющая собой жесткую систему. Если в этой системе открепить два крайних поводка, то тем самым она приобретет две степени свободы. Если же соединить освобожденные таким образом элементы шарниров вместе, получится опять жесткая система, но совершенно иной конфигурации. Полученная таким образом цепь, состоящая из связанных вместе жестких одноповодковых звеньев, была названа простой замкнутой цепью нормального типа с однообразным распределением поводков, а соответствующие механизмы отнесены к третьему классу.

Следующее построение опять усложняет цепь: если отсоединить поводки у двух жестких звеньев замкнутого многоугольника, то тем самым число степеней свободы системы увеличится на два. Если затем освобожденные от поводков шарниры соединить вместе, то эти две степени свободы вновь исчезают. Таким образом можно получить новую группу цепей, характерной особенностью которых является совокупность двух или большего числа многоугольников, образованных жесткими звеньями. Эти цепи были названы сложными замкнутыми цепями, а получаемые с их помощью механизмы отнесены к четвертому классу.

Все цепи, относящиеся к рассмотренным четырем классам, объединяются в одну большую группу, названную первым семейством. Далее можно строить более сложные цепи второго семейства; здесь также обнаружены четыре класса; усложнение цепей второго семейства приводит к четырем классам третьего семейства, затем к четвертому семейству; подобные рассуждения можно продолжать до бесконечности.

Так получается большое многообразие цепей — схем каких-то механизмов, над которыми можно производить некоторые формальные операции. По-видимому, существует некоторое сродство между этими цепями, несущими механическую информацию, и теми цепочками органических молекул, которые несут генетическую информацию, хотя теория образования механических цепей была разработана задолго до того, как были открыты гены. Количественные и качественные соотношения, полученные методом построения цепей, приводят к двум следствиям. Первое состоит в том, что все существующие механизмы укладываются в описанные структурные образования и лишь изредка попадают в число двух образований.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату