Формула Гейзенберга получила скромное название —· соотношение неопределенностей.

А позже, оценив ее основополагающее значение, физики стали часто говорить о принципе неопределенности. И вместе с ними — философы, потому что коротенькая формула легко и с полным правом совершила прыжок из владений квантовой физики в область философии природы.

Это и был тот искомый фундаментальный закон, до которого в те же дни, ведя свой давний спор с классической причинностью, почти добрался в норвежском одиночестве Нильс Бор.

Надо ли растолковывать, что он перечувствовал, когда по возвращении в институт увидел гейзенберговскую формулу?! Она явилась для него зрелищем и прекрасным, и драматическим. Его былой ассистент шведский теоретик Оскар Клейн рассказал историкам:

— …Бор отнесся с истинным восхищением к этой замечательной формуле. А в то же время ему стало как–то не по себе, быть может, потому, что все это роилось в его собственной голове, да не успело оформиться до конца.

Но разве не «удивительнейшим образом удивительно», что они — Бор и Гейзенберг — нашли порознь и несхожими путями то, до чего не могли доискаться вместе? Психологически совсем не удивительно…

Верно, что в спорах рождается истина. Так было, в сущности, и на сей раз: без многомесячной, мнимо безысходной дискуссии ни один из них, вероятно, до решения не добрался бы. Но верно и другое: в спорах истина умирает. Она в них попросту тонет. В спорах беспрестанно разрушается сосредоточенность каждой из сторон. Кроме взаимной помощи, возникают взаимные трения–помехи. И в тысячный раз оправдывается испанская народная мудрость: «Вдвоем привидения не увидишь!» Теоретические открытия сродни привидениям.

Наверное, прав был, или уж по меньшей мере знал, о чем говорил, выдающийся английский философ и математик Бертран Рассел:

«Без способности к умственному одиночеству культура была бы невозможна».

А наш академик Владимир Иванович Вернадский, ученый необъятной широты мышления, как раз в ту пору, в середине 20–х годов, однажды написал своим коллегам по академии:

«Вся история науки доказывает на каждом шагу, что в конце концов постоянно бывает прав одинокий ученый, видящий то, что другие своевременно осознать и оценить были не в состоянии».

Возникновение соотношения неопределенностей — одна из лучших страниц в истории квантовой революции. Она, как притча, навечно годная впрок… В наши дни господства громадных институтов и многолюдных лабораторий многие живут с убеждением, что в совместном научном поиске и только в нем — вся сила. Они заблуждаются: не вся! Поиски сообща — великий стимулятор. И нигде не ценили этого так высоко, как в копенгагенской школе Бора или московской школе Ландау. Но надо уметь разлучаться — отправляться в умственное одиночество. Может быть, в самый несчастливый момент тупика это–то всего более и надобно — уметь разлучиться. Недаром же Резерфорд после шести часов вечера разгонял остающихся в лаборатории: «Нельзя все время работать — надо же когда–нибудь и думать!» Он знал, когда и как являются привидения…

Бору в Норвегии вслед за первым привидением — контурами соотношения неопределенностей — явилось еще и второе. Гейзенберг сказал, что Бор привез с собою принцип дополнительности.

9

Что дало право Гейзенбергу на такое умозаключение? Ведь сами эти слова — принцип дополнительности или теория дополнительности — Нильс Бор впервые ввел в обращение только осенью 1927 года, а тогда лишь кончался февраль. Суть в том, что идея, как всегда, родилась раньше термина.

Приготовленную Гейзенбергом статью о соотношении неопределенностей Бор встретил не только с восхищением. Раздалась и критика. Да, обычная в ту эпоху бури и натиска неумолимая критика. Она бывала уделом каждого нового шага вперед — такому шагу всякий раз надлежало быть безупречно обоснованным. Слишком высока была ставка — убедительность нового физического миропонимания. Ученик сознавал это не менее остро, чем учитель.

«…Я никогда не послал бы мою работу в печать, прежде чем не узнал бы, что Бор ее одобряет», — говорил Гейзенберг историку Куну.

А Бор сразу заметил огрехи в выводе замечательной формулы. Эти огрехи не сказывались на результате, но вызывали сомнение в его строгости и обязательности. А источником ошибок было все то же одностороннее пренебрежение Гейзенберга к волновой ипостаси частиц:

«Я хотел вывести все из матричной механики, и потому мне не нравилось привлекать к этой проблеме волновую теорию».

А привлекать пришлось. Ну хотя бы оттого, что ему понадобилось мысленно поставить идеальный эксперимент по наиточнейшему измерению координаты и скорости электрона. Он должен был показать, что и в идеальном опыте неопределенности остаются.

…Сверхчувствительный микроскоп. Практически не осуществимый, но теоретически — сколь угодно. Электрон освещают самые–самые коротковолновые лучи. Они, как игла, накалывают микрочастицу и засекают место ее пребывания. Для точности нужна игла поострее. А ширина острия — это длина волны освещающего луча. Даже рентгеновский луч тут непригоден: слишком тупая игла — у него длина волны соизмерима с диаметром атома водорода, а электрон в десятки тысяч раз меньше. Вы захотели узнать адрес друга и слышите в ответ: он живет где–то в пределах Москвы! Такова точность рентгена, если ваш друг — электрон. Но мысленно можно брать иглы сколь угодно острые — гамма–лучи радиоактивных элементов. И добиваться все большей точности. Неопределенность в знании координаты будет становиться все меньше. И наконец гамма–микроскоп сможет сообщить надежный адрес: вот он, здесь, электрон!

Ясно, когда это случилось бы: при исчезающе малой — нулевой — ширине острия. Но столь тонкого острия не существует — нет гамма–лучей с длиною волны, равной нулю. А на квантовом языке гамма–лучи — это еще и поток фотонов с очень высокой частотой колебаний электромагнитного поля. Чем короче волна, тем больше частота, тем энергичней квант–фотон. При нулевой длине волны частота бесконечна. Такой фотон приносил бы бесконечную энергию. Он обладал бы бесконечной массой. Это в свой черед физическая бессмыслица.

Словом, даже в идеальном эксперименте не удалось бы измерить координату электрона с абсолютной точностью. (По дороге там случились бы еще и другие осложнения, но это уже не важно.)

А если что–нибудь невозможно в идеальной лаборато рии, то оно невозможно и в природе: только по одобренным ею сценариям ставят физики свои экспериментальные фильмы.

Однако что же получается? Гамма–микроскоп все–таки позволяет в мысленном опыте все уменьшать и уменьшать неопределенность в координате (лишь бы не до нуля)?

Да, позволяет. Но что происходит при этом со второй неопределенностью — с уточнением скорости электрона? Чем тоньше накалывающее острие, тем энергичней квант. И потому тем непоправимей нарушает он движение электрона: при столкновении с массивным фотоном в момент измерения координаты электрон приобретает неопределимую скорость. И эта неопределенность его дальнейшего движения растет по мере утоньшения гамма–острия.

Это и отражается в соотношении неопределенностей.

Видно без пояснений: математический рассказ об этом мысленном эксперименте с гамма–микроскопом требовал сочетания обеих картин — корпускулярной и волновой. А Гейзенбергу не нравилось привлекать волновую. И он заранее знал, что это его «мне не нравилось» не понравится Бору:

«…Я чувствовал, что у Бора вызовет недовольство мое истолкование проблемы…»

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату