метафору: «Я — волна!» Вообразим его могучим здоровяком весом около центнера — 10 5 граммов. Тогда был бы он массивней электрона в 1032 раз. А его дебройлевская волна такое же количество раз умещалась бы в поперечнике атома. Единица с тридцатью двумя нулями! Снова: вообразим ли эксперимент, в котором можно было бы засечь протяженность, равную эдакой доле атомных размеров?! И потому предложенная Карлом Усеном метафора все–таки принадлежала поэзии, а не физике.
…Все началось с планетарной модели — со сравнения атома с Солнечной системой. А теперь можно позволить себе обратное сравнение — попробовать в Солнечной системе узреть черты квантовой атомной модели.
Если так, то планеты вращаются по разрешенным орбитам. А разрешены лишь те, в которых укладывается обязательно целое число «планетных волн» де Бройля. Для нашей Земли это означает, что две ближайшие дозволенные природой орбиты разнятся между собой на одну «земную волну». Кольцевой просвет меж ними и того меньше. В этот просвет не втиснуться ни атому, ни электрону, ни мультимиллионно–миллиардно–триллионной дольке электрона. Такой просвет не более реален, чем полное отсутствие просвета. Словом, эллипсы разрешенных земных орбит просто вплотную прилегают друг к другу, практически заполняя все пространство. Никакой прерывистости в череде дозволенных планетных путей нет. И уровни энергии взаимного притяжения Солнца и планет никакой лестницы не образуют. И думать о квантовых скачках с уровня на уровень совершенно бессмысленно (даже если бы планеты умели скакать, испуская кванты).
Что же получается? «Квантование» Солнечной системы по образу и подобию атома ничего не дает — ничего нового по сравнению с тем, что уже выведала классическая механика. Оттого она и не подозревала о тех новостях, какие принесли с собою «волны материи».
А в микромире, где так неощутимы массы физических телец, очень и очень ощутима их волнообразность. Не случайно, что она раскрылась на электроне: он — легчайшая крупица вещества в атомном обиходе.
Но и тяжелые частицы, созидающие ядра, — протоны и нейтроны, — тоже отчетливо выраженные микрокентавры. Их волновое поведение столь же броско дает знать о себе, как и корпускулярное. Они ведь всего в 2000 раз массивней электрона. Конечно, от этого их дебройлевские волны во столько же раз короче электронных: тысячные доли ангстрема, то есть что–то вроде 10–11 см. Но хотя это и малая величина, она примерно в сто раз больше радиуса электрона–частицы— 10–13см. И потому весьма солидна в масштабах микромира. Легко почувствовать важность «протонных волн» и «нейтронных волн» для верного описания событий в глубинах материи.
Разумеется, волнообразность ядерных частиц тоже была доказана прямыми экспериментами. И они, как электроны, прошли экзамен на дифракцию и интерференцию. Физик Демпстер, кажется, первым получил снимки кристаллов в протонных лучах. И подобно фотографии, рентгенографии, электронографии, возможна протонография. А нейтронография ныне — целая наука.
Все карликовое население микромира принадлежит к неисчислимым племенам микрокентавров. Кто–то из английских или американских физиков придумал даже занятный термин для микротелец — «уэйвиклс»: он соединил слова «уэйв» (волна) и «партиклс» (частицы). Очень выразительный термин. А по–русски его могли бы заменить даже два равнозначных словообразования в духе поэзии Велемира Хлебникова: «волницы» и «частолны».
Не надо объяснять, что все эти волницы или частолны, — заряженные и нейтральные, устойчивые и распадающиеся, прописанные в силовых полях и прописанные в веществе, открытые в атомных недрах и космических лучах, найденные на кончике пера теоретиками и создаваемые на гигантских ускорителях экспериментаторами, — все они, получившие в разное время и в классификациях по разным признакам звучные клички нуклонов, мезонов, гиперонов, лептонов, барионов, адронов, резонансов, фермионов, бозонов, фотонов, гравитонов, кварков, глюонов, — все они, заслужившие звание просто элементарных частиц и античастиц, странных и очарованных, — все они потребовали и поныне требуют для описания их поведения и свойств таких идей и образов, в каких никогда не нуждались долгие века познания природы…
И раньше всего остального надо было физикам создать механику волн–частиц — механику, отображающую эту врожденную двойственность всех «первооснов материи».
Вот что летом 1925 года осознал Нильс Бор, когда на пророчил близящуюся «решительную ломку понятий, на которых до сих пор было основано описание природы».
Но по удивительному стечению обстоятельств он не знал, что тем летом такая предсказанная ломка шла уже полным ходом.
Глава пятая. Идеи и страсти.
Теперь, когда приближается кульминация эпохи бури и натиска, слова «удивительно», «странно», «причудливо», кажется, и вовсе не перестанут сходить у нас с языка. А ведь есть в них очевидная нескромность. Мы присваиваем себе право соотносить повадки природы с человеческим мерилом обычного и необычного, будто человек и вправду есть мера всех вещей.
Отчего мы доверяемся этой древней мудрости? Конечно, ее можно по–разному толковать. Но, право же, есть в ней привкус самозванства человека: он объявил себя высшим судьей в делах природы на том единственном основании, что действительно некому возразить. По–видимому, верно, что никто в природе, кроме человека, не способен создавать умопостигаемые и проверяемые модели самой природы. Но опыт человека ограничен. И разве не подчеркиваем мы эту ограниченность, когда обыденно сущее в природе называем причудливым, а естественно происходящее — странным?
Вселенная начала открываться человеку «не с того конца». Точнее, вообще не с конца, а с середины: с вещей и событий земного масштаба. Лишь потом люди смогли заглянуть своими формулами и приборами в дали галактик — в сторону большого — и в глубины атома — в сторону малого.
А примись они за дело познания по правилам разумной очередности, — сначала простое, потом все более сложное, — наверняка ни на одном этапе не возникало бы никакой мучительной драмы идей. Все раскрывалось бы последовательно — по заведенному самой природой порядку. Все узнавалось бы, как при освоении чужого языка, начиная с алфавита: с законов поведения в пространстве–времени элементарнейших первооснов материи. Необъятный том непротиворечивого знания рос бы страница за страницей, без нарушения нумерации, без пропусков и без ссылок на другие источники понимания (вроде всеведущего Провидения). И всего заманчивей, что нашим представлениям о природе удавалось бы обогащаться, не требуя от нас жертв: не надо было бы отрекаться от прежних взглядов и спорить об их применимости. И никто не ведал бы огорчения оттого, что так трудно вникать в самое простое…
И уж если продлить это голубое видение, то оказалось бы, что, скажем, квантовая механика — это арифметика физики, а теория относительности — таблица умножения. То и другое учили бы в школе дети (иные, конечно, без любви, но все без особого труда).
Однако физики пришли в микромир не из его недр. Они ворвались в него извне. Удивительно ли, что примитивные тексты на дощечках с острова Пасхи оказались труднее для понимания, чем вторая часть «Фауста» или полотна абстракционистов?
У физиков одно оправдание (оно же утешение): это сама природа повинна в том, что разумным существам пришлось начать ее изучение с середины. Она сама предопределила макромасштаб для такого существа. Оно не могло бы образоваться на микроуровне бытия материи и явиться туземцем в микромире. Доводов множество. Один из них дает автоматика (или кибернетика).
Можно построить машину, выпускающую в качестве продукции собственные подобия. Но доказано, что такая самовоспроизводящаяся машина обязана обладать высоким уровнем сложности. Простое, конечно, легче воспроизвести, однако процесс воспроизведения своего подобия очень не прост. Простому он недоступен. Вирус, умеющий сотворять вирус, вынужденно являет собою мудреную конструкцию из множества атомов. И с физической точки зрения он — кажется, мельчайший представитель живого — есть уже макротельце. А ему еще нечем мыслить.
Столь виртуозное достижение инженерного гения живой природы, как человек, не могло бы состояться