С молодости Планк был верен этому принципу: двумя десятилетиями раньше — в 1879 году — на страницах своей докторской диссертации он уверял, что атомистические взгляды на строение материи приводят к противоречиям. Он полагал, что дробимость вещества не может иметь предела. А теперь принужден был сам допустить, что даже у дробимости энергии есть границы!

Получалось, что кванты — безусловно неделимые сгусточки излучения. Наименьшие из возможных сгусточки света. Настоящие — в первоначальном смысле этого слова — «атомы» электромагнитного поля. И нельзя было сказать себе в оправдание или в утешение: «как бы атомы». Нет, хотя никто еще в 1900 году ничего не знал об устройстве атомов вещества, все же ясно было, что как–то они устроены и, стало быть, делимы. А кванты открылись теоретическому прозрению как нечто, заведомо не поддающееся дальнейшему измельчению. Иначе незачем было бы вводить их в теорию.

У Планка был один выход: отрицать физичность собственной идеи, а признавать лишь ее подсобную — математическую — ценность. Иными словами, введя кванты по необходимости в формулу, в картину природы их не вводить! «Рабочая гипотеза» — не больше. «Строительные леса» — вот и все. Так он и поступил.

(Тут для развлечения можно вообразить, как бенедиктинский монах Бертольд Шварц, изобретя порох и уже устроив громкий взрыв, сказал бы окружающим: «Нет–нет, я пошутил!..»)

Даже через десять лет после своего великого «акта отчаяния» уже стареющий Макс Планк призывал молодого Иоффе очень осторожно обращаться с идеей квантов: «не идти дальше, чем это крайне необходимо» и «не посягать на самый свет». Последнее означало: не думать, будто свет действительно представляет собою поток квантов.

Эта позиция Планка оставалась неизменной до конца его дней, а он умер уже после второй мировой войны почти девяностолетним стариком, зная, как физическая реальность квантов излучения была чудовищно продемонстрирована потрясенному человечеству атомными взрывами над Хиросимой и Нагасаки. Через полтора десятилетия после его смерти Нильс Бор, накануне собственной кончины, говорил историкам в своем заключительном интервью:

— …В известном смысле можно сказать, что Планк использовал последние сорок лет жизни, если не пятьдесят, на попытки устранить свое открытие из мира.

Почувствовав, что это утверждение звучит, пожалуй, слишком сильно, Бор добавил, что Планк все же испытывал удовлетворение от своего открытия. А как же тогда «попытки устранить»? «Все шло к этому…» — смягчил свое осуждение Бор.

…К счастью для познания природы, жизнь замечательных идей не подвластна воле или безволию их провозвестников. Планк в 10–х годах оттого и предостерегал молодого Иоффе от покушения на природу света, что несколькими годами раньше такое покушение уже предпринял другой молодой исследователь. И притом с несомненным успехом.

То был Эйнштейн. Его–то «первый шаг» и вспомнил Планк в Нобелевской лекции.

Двадцатишестилетнему эксперту 3–го класса из швейцарского бюро патентов почему–то крайне необходимо было то, чего чурался Планк: «идти дальше». В одном и том же 17–м томе немецких «Анналов физики» он опубликовал на протяжении 1905 года три работы, навсегда вошедшие в историю естествознания. Одна открывала путь к окончательному доказательству атомистической структуры вещества. Другая содержала последовательно осмысленные основы теории относительности. Третья вводила в физику квантовую теорию света.

Эйнштейн осмелился провозгласить физическую реальность квантов. Он заговорил о них как о частицах излучения. Буквально: как о тельцах, «локализованных в пространстве»! Если раскрыть это определение, то получится вот что: в своем движении сквозь пространство кванты все время занимают каким–то образом ограниченное место (или «локус» по–латыни). В этом выразилась вся рискованность мысли Эйнштейна.

Превращение, ставшее уделом идеи квантов, выглядит так…

В 1900 году Планк оповестил коллег: отныне излучающие тела отпускают свет теоретикам определенными порциями!

Только теоретикам, потому что на самом деле квантов нет, ими нельзя обладать: отмеренные в момент испускания неизвестным природным механизмом эти порции тотчас сливаются в непрерывный световой поток. Квант — не более чем капля, падающая в океан: там она немедленно теряет свою отдельность, свою локализованность, свою капельность.

В 1905 году Эйнштейн уведомил коллег об иной возможности: испущенные кванты — это корпускулы, сохраняющие в пространстве свою целостность!

Свет отпускается порциями не на мгновение и не только теоретикам: он действительно существует в виде потока квантов. Свидетельством тому законы фотоэлектрического эффекта — возбуждения светом электрического тока, когда световые лучи падают на металл.

Опытные законы этого явления необъяснимы, если свет вымывает из металла блуждающие там электроны, наподобие того, как морские волны постепенно размывают берега. Но эти законы становятся легко выводимыми, если верна другая картина: свет не вымывает, а выбивает электроны. Он обрушивается на вещество, как ливень. Удачливые капли–кванты сталкиваются с попавшимися на их пути электронами и отдают им свой энергетический запас. Энергии квантов и вероятностей столкновений хватает как раз на то, чтобы возникало наблюдаемое истечение электронов — фототок.

Планковские порции излучения, став эйнштейновскими световыми частицами, обнаружили черты крупиц вещества!

Нет, Эйнштейн не сказал в резерфордовском духе, будто теперь он знает, «как выглядит квант». Он не искал для этого предметных сравнений: дробинка… стрела… волновой гребешок. Ему не представилось ничего такого — модельно–механического. Ему довольно было умозаключения: в квантах классического электромагнитного поля явственны свойства обыкновенных частиц.

Как просто и как непонятно! Эйнштейн задал непосильную работу нашему воображению. И непостижимо, как его собственное воображение смирилось с тем, что тут открылось…

….Вот что произошло в физике микромира еще прежде, чем появилась загадка устойчивости планетарного атома: на протяжении пяти лет — в два приема — стартовала теория квантов, чтобы со своей стороны стать, по выражению Макса Планка, источником непреходящего мучительного беспокойства для ученых.

Однако почему же мучительного?

Но сначала — для ясности ответа — кое–что о другом…

3

Пережил ли и Эйнштейн в час своей решимости хоть малейший приступ отчаяния или ему в отличие от Планка это чувство осталось незнакомым?

Впечатление такое, что за скучным конторским столом в бюро патентов и на приветливых улицах швейцарской столицы он одиноко наслаждался своими теоретическими видениями. И нимало не огорчался из–за их явной несовместимости со здравым физическим смыслом. Чудится: его вела победительная моцартовская беззаботность, когда на протяжении одного года он предлагал дисциплинированно мыслящему читателю «Анналов физики» удивительные плоды своих размышлений. Совсем по Пушкину — как в минуту встречи Моцарта с Сальери:

…Ага! увидел ты! а мне хотелось Тебя нежданной шуткой угостить…

Кажется даже, что его нежданные и сверхсерьезные шутки никак нельзя было назвать плодами долгих размышлений. Точнее, чем к кому бы то ни было в физике нашего века, подходили к нему слова, сказанные некогда о Леонардо: «Силы в нем было много, и сочеталась она с легкостью». Если в том году— 1905–м — исполнилось ему всего двадцать шесть, то откуда же было взяться сроку на томительно долгое выращивание плодов? Решали не затраченные часы и дни, а мощь и свобода мысли. Пожалуй, свобода поражает еще больше, чем мощь, и легкость — еще больше, чем сила.

Нежданными «шутками» для физического здравомыслия звучали многие утверждения теории относительности.

И ряду из них предстояло сыграть крайне важную роль в нашей хорошей истории.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату