расчета, показывающий достаточное согласие с данными опыта.
Следующий раздел трудов Крылова посвящен различным задачам, связанным с упругими колебаниями механических систем. Сюда относится статья, помещенная в т. XVI «Mathematische Annalen» и носящая заглавие: «Uber die erzwungenen Schwingungen von gleichformigren, elastischen Staben» (1904– 1905), где автор дает разнообразные приемы решения указанного рода вопросов для прямолинейных упругих брусьев. Далее, мы имеем здесь статью: «Некоторые замечания о крешерах и индикаторах» («Известия Академии наук», 1909). Методы, разработанные в этой статье, Крылов имел случай применить в интересном практическом вопросе: в 1914 г. при испытании компрессоров орудий для одного из готовившихся к вступлению в строй линейных кораблей, индикаторы записали странную диаграмму, дававшую для давления в цилиндрах компрессора величину, вдвое превысившую ожидаемую; казалось, что компрессоров нельзя принять, так как их прочность не была рассчитана на такую нагрузку. Этим чрезвычайно задерживалась готовность корабля и вызывался значительный дополнительный расход до 2,5 млн. рублей. Алексей Николаевич, которому было поручено расследование дела, обнаружил, однако, что индикаторы были использованы неправильно, вследствие чего они и записали не то давление, которое было на самом деле.
Весьма интересна, далее, работа А. Н. Крылова «О напряжениях, вызываемых в упругой системе динамической нагрузкой». Автор дает тут очень ясный и общий прием для решения различных задач этого рода и сопровождает его весьма интересными примерами. Любопытно отметить здесь ошибку, обнаруженную Крыловым в работе такого крупного ученого, как всемирно известный Levi Civita, который, неправильно толкуя свою вполне верную формулу, по которой определяется коэффициент для вычисления напряжения моста, пришел к неприемлемому заключению: выходило, что наиболее тихий ход по мосту является наиболее опасным. А. Н. Крылов вполне выяснил ошибку и дал указание, как следует пользоваться формулой.
Чрезвычайно интересен мемуар Крылова «О расчете балок, лежащих на упругом основании» (Ленинград, 1930). Этим вопросом занимался японский ученый Хоясеи, который дал для него свой прием решения. Но метод Хоясеи приводит к довольно длинным выкладкам, сопровождаемым вычислениями тем больших чисел постоянных коэффициентов, чем больше имеется в балке мест разрыва нагрузки. Алексей Николаевич дал свою оригинальную методику решения задачи, причем «…какова бы ни была нагрузка — непрерывная, прерывная, сосредоточенными силами, — решение вопроса не требует составления многочисленных уравнений, выражающих угловые сопряжения в местах разрыва нагрузки, и число постоянных произвольных, при любых условиях закрепления концов, будет два, для которых и пишутся два уравнения с двумя неизвестными» («Расчеты балок», стр. 42). В конце работы метод прилагается к расчету днища корабля.
Чтобы закончить рассмотрение отдельных исследовательских работ А. Н. Крылова, остановлю ваше внимание еще на двух его статьях. В первой — «Определение способов последовательных приближений к нахождению решения некоторых дифференциальных уравнений колебательного движения» — разбирается вопрос об интегрировании уравнения вида
где
Закончив на этом рассмотрение наиболее значительных исследовательских работ А. Н. Крылова, переходим к его трудам характера обзоров. Такова написанная им совместно с Ю. А. Крутковым монография «Общая теория гироскопов и некоторых технических их применений» (Изд. Академии наук, 1934). Сочинение разделяется на три части. Ю. А. Круткову принадлежит вторая часть — теория гироскопа в векторном изложении; А. Н. Крылов изложил аналитическую теорию с ее важнейшими техническими приложениями и, имея в виду главным образом именно эти приложения, дает прием, состоящий в следующем: сперва составляются точные уравнения движения для данного прибора, отвлекаясь от трения; затем отбрасываются малые члены и по упрощенным уравнениям определяются положения динамического равновесия главной оси маховика; а затем изучаются малые колебания около этого положения, приняв во внимание как отброшенные члены, так и силы трения в цапфах и подшипниках.
Таким образом, устанавливаются соотношения между главными элементами прибора, соблюдение которых необходимо для того, чтобы прибор с достаточной степенью точности удовлетворял своему назначению.
Далее, я должен отметить «Лекции о приближенных вычислениях», вышедшие первым изданием в 1911 г. и вторым, в пополненном виде — в 1932 г. Говоря словами Алексея Николаевича, курс «имеет целью показать действительно применимые практические приемы и способы вычисления…». «Главная забота была о том, чтобы показать, как и когда тем или иным приемом пользоваться». Курс охватывает все важнейшие задачи этого рода: вычисление корней численных уравнений, определенных интегралов, пользование тригонометрическими рядами и приближенное решение дифференциальных уравнений. Редко встречается курс, где бы с такой ясностью и полнотой излагались как основные правила, так и примеры их применений; всякое вычисление доводится до конца, с указанием всех необходимых промежуточных этапов, вследствие чего изучивший книгу Крылова может вполне овладеть изложенными в ней приемами.
Наконец, остановлю ваше внимание на замечательной книге: «О некоторых дифференциальных уравнениях математической физики, имеющих приложение в технических вопросах», впервые вышедшей в 1913 г., а затем вторым пополненным изданием — в 1932 г. и третьим — в текущем году.
Я не знаю руководства, лучше освещающего разнообразнейшие приемы интегрирования уравнений, практически применяемые в этой основной задаче; изложение в высшей степени простое, ясное и полное, с указанием подробного хода вычислений иллюстрировано самыми разнообразными примерами, как заимствованными из работ других ученых, так и взятыми из статей самого Крылова. Здесь включено много результатов, о которых нам пришлось упоминать выше, когда мы касались чисто исследовательских трудов Крылова. Особое внимание обращает на себя глава VI (последнего издания книги), трактующая о ряде Фурье.
Здесь автор дал оригинальный прием усиления быстроты сходимости указанных рядов, позволяющий в чрезвычайной степени сократить вычисления при подсчете числового значения выражаемых рядами функций; сверх того, тот же прием дает способ находить производные от функции, выраженной таким тригонометрическим рядом, почленное дифференцирование которого невозможно.
На этом я заканчиваю обзор оригинальных трудов А. Н. Крылова, оставляя в стороне еще многие его менее значительные работы по самым различным вопросам. Эти работы отнюдь не потеряли своей ценности; во многих из них Крылов проявил ту же проницательность, необычайный дар выделения существенных влияний, управляющих ходом явления, чрезвычайное мастерство в вычислительном процессе; рассматривая любой вопрос, Алексей Николаевич считает его разрешенным лишь тогда, когда показан способ довести дело до получения числа.
Я не отметил еще одной стороны творчества А. Н. Крылова — он является изобретателем ряда ценных приборов, главным образом связанных с его специальностью — теорией корабля; в числе их имеется и особый интегратор оригинальной системы.
В заключение упомяну еще об очень важном труде А. Н. Крылова — его переводе «Математических начал натуральной философии» Ньютона. С чрезвычайной тщательностью и любовью он исполнил эту работу, и мы получили величайшее произведение человеческого гения в образцовом переводе прекрасным