атмосферу в комнатушке весьма тяжелой. Да и работа поначалу не ладилась, и Глэйзбруку пришлось спрашивать совета у Максвелла.

– Вы знаете, – ответил Максвелл, – другие вопросы образовали вокруг моей головы такую плотную корку, что вашему придется немного подождать, пока он просочится.

А через день или два подошел и сказал: если вы сделаете так и так, то, я думаю, все будет в порядке.

Так и оказалось. В надлежащий срок диссертация была написана и посвящена Максвеллу. Измеренная скорость волн была весьма близка к величинам, предсказываемым, исходя из френелевской и Максвелловой теорий.

Глэйзбрук по представлению Максвелла был избран «феллоу» – членом совета колледжа. Дальше работа была продолжена совместно Максвеллом и Глэйзбруком на другом кристалле. Под названием «Плоские волны в двухосном кристалле» она была доложена Максвеллом Королевскому обществу в июне 1878 года. Различие между следующими из теорий Максвелла и Френеля и экспериментальными данными было менее 0,00007. Такой же результат был получен на другом кристалле – исландского шпага. Этот результат был представлен Королевскому обществу летом 1879 года. Видимо, это была последняя научная работа по экспериментальной физике, в которой Максвелл принимал участие...

Ученики Максвелла со временем заняли видные места в мире английской науки.

Замкнутый Шустер, активный велосипедист и скалолаз, меценат и страстный путешественник, стал вице-президентом Королевского общества, предложил изящный метод определения отношения заряда к массе электрона по отклонению в магнитном поле и несколько других весьма ценных идей.

Интеллигентный Глэйзбрук, разделявший с Шустером страсть к альпинизму и с сыном Питера Тэта Фредди – к гольфу, стал первым директором Национальной физической лаборатории, где в аэродинамических трубах исследовались модели первых английских самолетов.

Талантливый земляк Христал – «второй спорщик» и первый лауреат премии Смита 1875 года – по рекомендации Максвелла занял кафедру математики в Эдинбургском университете и занимался в физической лаборатории Питера Тэта. После смерти Питера в 1901 году Христал стал генеральным секретарем Эдинбургского королевского общества. Христал многое сделал для усовершенствования телефона и фотоаппарата, для объяснения формы волн в шотландских озерах – лохах. Он написал учебник алгебры и пособие по геометрии для английских школ.

Самый молодой – Шоу, стал виднейшим английским метеорологом, директором Метеорологического управления. Он ввел в практику метеорологии исследования с помощью судов, воздушных шаров, он ввел в практику новую единицу – миллибар. Его долгая жизнь, увенчанная множеством наград и почестей, окончилась всего за несколько месяцев до конца второй мировой войны.

Среди двух студентов, присутствовавших на последней лекции Максвелла, был Амбруаз Флеминг. Он посвятил жизнь вопросам практического использования электромагнитных волн, открытых его учителем и обнаруженных Герцем. Вместе с Оливером Лоджем, испытавшим сильное влияние Максвелла, Флеминг стал «мозговым центром» у молодого и процветающего Маркони. Затем Флеминг работал с Эдисоном и сделал крупнейшее, можно сказать, революционное изобретение в радиотехнике: в 1904 году он изобрел первую радиолампу – диод.

Джон Генри Пойнтинг, проводивший под руководством Максвелла в Кавендишской лаборатории эксперименты по определению средней плотности Земли (а-ля Кавендиш), занял кафедру физики в Берлинском университете. Он получил от Королевского общества Королевскую медаль «за исследования по физике, особенно в связи с гравитационной постоянной и теориями электродинамики и радиации». Таким образом, он оказался одним из самых верных по отношению к Максвелловой тематике. Он ввел в теорию электромагнитного поля Максвелла важнейшее понятие вектора потока электромагнитной энергии – «вектора Умова – Пойнтинга» (русский ученый Н.А.Умов за десять лет до Пойнтинга ввел аналогичный вектор для звука).

И еще один, не бывший формально учеником Максвелла, но находившийся под сильнейшим его влиянием гений, оригинал и отшельник – Оливер Хевисайд. Хевисайд уже после смерти учителя произвел генеральную «чистку» уравнений Максвелла, устранил повторения, придал им современный вид. Кроме того, Хевисайд ввел в электро– и радиотехнику такие важнейшие понятия, как «линия без искажений» и «слой Хевисайда». Он разработал операторный и символический методы решения дифференциальных уравнений, дал «формулу разложения Хевисайда», и по сей день весьма почитаемую электриками-теоретиками. Он предвосхитил и многие важные выводы теории относительности.

...Почти все ученики Максвелла заняли видные места в английской науке, но ни один не смог бы похвастаться тем, что превзошел учителя. Множество можно придумать причин. Не смог сам Максвелл стать таким педагогом и учителем, который жил бы делами и славой своих учеников, – не такой был он, и не такими были они; и, может быть, главное, небосвод научной истории еще не повернулся настолько, чтобы засияли на нем имена Максвелловых учеников, и лишь через много лет, после беккерелевской засвеченной фотографической пластинки, откроются новые горизонты и призовет физика новые сонмы молодых гениев. А те, кто родился раньше времени, должны будут довольствоваться скромными профессорскими должностями. И возможно, высшей славой, которой они коснулись, останется для этих людей то, что были они выпестованы и любимы великим Максвеллом.

КРУКС, ДУХИ И РАДИОМЕТР

Экспериментальная работа, проделанная совместно с Глэйзбруком, хотя и подтверждала косвенно Максвеллову теорию, не была все же решающим доказательством ее правильности.

Таким прямым доказательством могло быть, например, обнаружение электромагнитных волн или давления света. Удивительно, но в Кавендишской лаборатории, казалось, никто не интересовался «проблемой доказательства».

Впрочем, было одно исключение...

Оно началось с открытия Вильяма Крукса.

В 1873 году английский химик Вильям Крукс решил определить атомный вес вновь открытого им элемента таллия и взвесить его на очень точных весах. Чтобы случайные воздушные потоки не исказили картины взвешивания, Крукс решил подвесить коромысла в вакууме. Сделал – и поразился. Его тончайшие весы были чувствительны к теплу. Если источник тепла находился под предметом, он уменьшал его вес, если над – увеличивал.

Усовершенствуя этот свой нечаянный опыт, Крукс придумал забавную игрушку, которую называли то радиометром, то световой мельничкой. И уже в названии сквозило, казалось, объяснение принципа работы этого нехитрого устройства, состоящего из невесомых лопастей, или крылышек, сделанных из фольги и

Вы читаете Максвелл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату