парикмахер, это не значит, что результат его манипуляций окажется выше вашей прически. (Но берегитесь хирурга, который проводит операции над больными).
Основных операций всего три. Это меньше, чем в школьной арифметике. Хотя даже это множество операций несколько избыточное. Операции называются
Начнем с исторической байки.
Аксель Иванович Берг – адмирал и академик, человек со взрывным характером, был одним из первых пропагандистов кибернетики в СССР, когда она еще официально считалась «продажной девкой капитализма». Дискретную математику тогда в технических вузах не изучали из-за полной ее практической бесполезности, а кибернетика уже начинала ею робко пользоваться.
Во время беседы с одним «журналистом по научной тематике», который утверждал, что теория множеств не только не нужна, но и не понятна простому советскому инженеру, Берг прервал беседу и приказал своему шоферу отвести их в ближайший детский садик.
В детском садике дети играли в большом песочнике. Других развлечений в послевоенных садиках было мало. Берг нарисовал в песочнике два больших частично пересекавшихся круга, как это делают со свадебными кольцами на открытках и машинах. (Для тех, кто со свадьбами в жизни не сталкивался, скажем, что с похожим перехлестом рисуют олимпийские кольца).
Далее он сказал: «Пусть в левый круг встанут все, кто любит манную кашу, а в правый – все, кто любит сливовый кисель!». Дети были горазды поесть (послевоенное время голодное), поэтому никто не остался равнодушно стоять в стороне и все забежали в нарисованные круги. Об'единение всех этих маленьких сладкоежек и есть операция об'единения теории множеств.
Но, поскольку почти все дети встали в то место, где круги наложились друг на друга, из-за любви к каше и киселю одновременно, то тем самым продемонстрировали понимание физического смысла операции пересечения двух множеств.
«Ну вот! Не знаю как инженеры, а дети понимают смысл операций над множествами!»,– сказал Берг…
Кстати, здесь роль универсума играл весь песочник.
То, что нарисовал на песке Берг, называют сейчас диаграммами Эйлера-Венна. А то, что находилось на песке за пределами каждого из кругов, было дополнением соответствующего множества, то есть множеством элементов универсума, не принадлежащих к числу любителей данного кушанья (там находились Берг с журналистом).
Если рассмотреть внимательно студенческую группу ух-004, то об'единение множества отличников и спортсменов даст множество под названием «слава группы ух-004». Принципиальное отличие об'единения множеств от школьного сложения не только в том, что студенты – это не числа и мы их не пересчитываем(
Ясно, что пересечение этих множеств даст двух студентов, которые одновременно и отличники и спортсмены. Они, скорее всего, девушки, да еще и красавицы, но красота не использовалась здесь в качестве характеристики, по которой выделялись элементы этих множеств…
Когда у математиков появляются в руках об'екты, а у нас здесь раздолье – любые об'екты можно брать, и операции – а мы основную тройку тоже обозначили, то математики начинают говорить об
Алгебра множеств как небо и земля отличается от школьной, хотя есть некоторые аналогии. В алгебре множеств есть те же названия законов:
Проиллюстрируем сказанное:
Коммутативный закон: Об'единение (пересечение) отличников и спортсменов равно об'единеию (пересечению) спортсменов и отличников.
Ассоциативный закон: От изменения порядка об'единения (пересечения) спортсменов, отличников и красавцев результат не меняется.
Дистрибутивный закон (только экзотическая версия): Об'единение красавцев с пересечением спортсменов и отличников равно множеству, в котором пересекаются об'единения красавцев и спортсменов с об'единеием красавцев с отличниками. (В условных обозначениях это было бы гораздо короче и нагляднее, но мы зареклись насчет формул).
Сложновато воспринимается на слух закон поглощения, который, однако, в ряде случаев позволяет упрощать теоретико-множественные конструкции. Пересечение отличников с об'единением отличников и спортсменов дает множество отличников. Или второй вариант. Об'единение отличников с пересечением отличников и спортсменов дает множество отличников. Тем не мение, если обдумать сказанное, и поразмахивать руками, то справедливость результатов очевидна.
Есть еще закон, название которого почему-то студентов забавляет – он им, видимо, что то-напоминает. А закон этот смело можно отнести к самым важным законам (свойствам). Это закон
Очень по-французски звучит
Очень прост закон
Самыми экзотическими являются два закона:
Противоречия: Пересечение множества спортсменов с дополнением множества спортсменов пусто. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены, то у этого пересечения не может быть общих элементов.
Исключенного третьего: Об'единение множества спортсменов с дополнением множества спортсменов совпадает с рассматриваемым универсумом. Действительно, коль скоро в дополнение множества спортсменов входят все остальные студенты неспортсмены из универсума, то это об'единение как раз и составляет весь универсум.
Остается только высказать сожаление, что не все математики согласны с этими законами. Еще большее сожаление вызывает то, что у них на это есть весьма веские основания… Не менее веские, чем у сторонников законов.
Несогласные себя называют
Согласным же ничего не осталось, как назвать самих себя