17
17Тем самым он невольно устанавливает в этой древней (если не для него самого, то, по крайней мере, для менее подвижных его сородичей) Вселенной новые границы, новые круги, конечно, просторнее прежних, но столь же невидимые, столь же властные, как и те, которые он, восстав, смог лишь заменить.
18
18Именно так обстояли дела в математике в период с 1948 по 1969 г., чему я был непосредственным свидетелем, когда сам входил в математическое сообщество. После моего ухода в 1970 г. наблюдалось что- то похожее на широкомасштабное сопротивление, вроде «всеобщего презрения», по отношению к «идеям» вообще, и особенно к важнейшим новаторским идеям, мною предложенным.
19
19Большинство моих старших коллег (о чем говорится, например, в разделе «Желанный долг», Введение, §10) относятся к этому промежуточному типу. В особенности мне приходят на ум Анри Картан, Клод Шевалле, Андре Вейль, Жан-Пьер Серр, Лоран Шварц. Впрочем, они все, кроме, быть может, Вейля, сочувственным взглядом, «не тая ни тревоги, ни укора», провожали меня в мои уединенные походы за приключениями.
20
20Конечно, это справедливо не для одного только «нашего искусства», но и (как мне кажется) для всякого труда, связанного с открытием, по крайней мере, в русле умственного познания.
21
21Всякая точка зрения приводит к развитию языка, на котором она может быть выражена, именно ей присущего. Иметь несколько «глаз»21, или «точек зрения», для изучения ситуации означает также (по крайней мере в математике) располагать несколькими различными языками, чтобы подойти к ней со всех сторон.
22
22Образ сомнамбулы был мне навеян названием замечательной книги Кестлера «Сомнамбулы» (изд. Кальман Леви), представляющей собой «Очерк истории концепций Вселенной» (со времен зарождения научной мысли до эпохи Ньютона). Одна из особенностей этой истории поразила Кестлера, а именно - до какой степени иногда путь от одной точки на маршруте познания мира до другой, как будто бы (по логике вещей и в перспективе многих лет) к ней совсем близкой, претерпевает немыслимые повороты, словно нарочно бросая вызов здравому смыслу; и как при этом, пройдя тысячу поворотов и, кажется, заблудившись безвозвратно, с «уверенностью сомнамбулы» люди, которые отправлялись на поиски «ключей» к устройству Вселенной, натыкались, как бы вопреки себе и часто не отдавая себе в том отчета, на другие «ключи», существования которых они решительно не предвидели, и которые, однако, оказываются «подходящими».
23
23Начиная с шестидесятых годов, часть из них написана совместно с коллегами (прежде всего Ж. Дьедонне) и учениками.
24
24Важнейшим из этих понятий сделан обзор в «Тематическом очерке» и в сопровождающем его «Историческом комментарии», которые будут включены в четвертый том «Раздумий». Некоторые из названий были мне предложены друзьями и учениками, как, например, термин «гладкий морфизм» (Ж. Дьедонне) или набор понятий «ситус, стэк, джерб, связка», получивших развитие в диссертации Жана Жиро.
25
25К тому моменту, как я покинул математическую сцену в 1970 г., общая масса моих публикаций (многие из которых написаны в соавторстве), имеющих центральной темой схемы, должно быть, составляла около десяти тысяч страниц. Это, однако, лишь скромная часть программы широкого масштаба, относящейся к схемам, которую я видел перед собой. Стоило мне удалиться со сцены - и эта программа была заброшена на неопределенное время, как нечто не сулящее перспектив… а ведь (за очень редкими исключениями) все, что я когда-либо заметил и затем развивал для передачи в общее распоряжение, благополучно вошло в копилку «хорошо известных», активно используемых в науке вещей.
26
26Вот, для заинтересованного читателя-математика, список этих двенадцати главных идей, или «ключевых тем» моего труда (в хронологическом порядке их появления):
27
27Из этих тем наиболее обширной по своей значимости мне представляется тема топосов, которая осуществляет идею синтеза алгебраической геометрии, топологии и арифметики. Самой объемной по числу приложений, получивших развитие уже на настоящий момент, оказалась теория схем. (См. по этому поводу