которой я был особенно увлечен, не вызывала у него интереса, он никогда не пытался скрыть это обстоятельство. Наоборот: он всячески подчеркивал свое безразличие (чтобы не сказать, отвращение) к тому, что я пытался ему рассказать. Это, признаться, случалось довольно часто - и, как правило, приводило меня в растерянность. Тогда я немного обижался на Серра; впрочем, до настоящей ссоры здесь
Самодовольство и обновление
никогда не доходило. Характером мы были несхожи; зато в математике нас на редкость многое объединяло. Иногда у меня возникало чувство, будто мы с ним в совершенстве дополняем друг друга.
Что-то похожее я (позднее) испытал в своей жизни только однажды, когда познакомился с Делинем. Та же общность математических интересов, та же «состроенность душ» - даже, пожалуй, еще сильнее. Впрочем, я припоминаю, что вопрос о принятии Делиня сотрудником в IHES4 в 1969 г. внес в наши отношения какой-то разлад. Но я не назвал бы это конфликтом: мы как будто не ссорились, и вообще я не замечал в наших с ним отношениях сколько-нибудь резких перемен.
Кажется, на этом я завершил обзор. Отчет готов: перед нами все, сколько-нибудь осязаемые, проявления конфликта на уровне личных взаимоотношений (между коллегами, учениками и проч.) внутри нашей среды - и это за добрых двадцать лет с лишком. Хотите - верьте, хотите - нет. Итак, в райском уголке, столь любезном моему сердцу, люди не знали ссор - а стало быть, и презрения? Еще одно противоречие в математике?
Решительно, этим стоит заняться подробнее!
21. Выше, пытаясь разобраться в своих воспоминаниях, я заведомо пропустил несколько мелких неприятных эпизодов. Конечно, в моих отношениях с тем или иным из коллег временами пробегал «холодок» отстраненности; причиной тому оказывалась, как правило, моя чрезмерная обидчивость. Мне следовало бы упомянуть здесь три-четыре случая, когда забывчивость друга явно наносила удар моему самолюбию. Например, мне могло показаться, что моя идея или научный результат, о котором я рассказал своему товарищу, сыграли известную роль в работе, которую он только что опубликовал - и забыл в ней об этом упомянуть. Все эти истории задержались у меня в памяти, а значит, в свое время затронули какое-то чувствительное место - эдакий родничок на оболочке души, который, как видно, с годами не зарастает! Только один раз я позволил себе упрекнуть коллегу в забывчивости - а честность моих друзей была, безусловно, вне подозрений. Уверен, что и мне самому случалось так ошибиться, пропустив необходимую ссылку в той или иной из своих работ. Но и меня никто никогда этим не корил. Вообще, я не помню, чтобы вопрос о приоритете
4Institut des Hautes Etudes Scientifiques - Институт высших научных исследований - прим. перев.
хоть однажды послужил внутри моего «микрокосма» причиной ссоры, вражды или даже просто кисло- сладкого словца, мимоходом брошенного в разговоре. Все-таки один раз, когда отсутствие подобающей ссылки в работе одного из моих коллег уж слишком (на мой взгляд) бросалось в глаза, я решил ему об этом сказать. Тогда все обошлось короткой перепалкой - и она только оздоровила общую атмосферу, не оставив в наших душах едкого осадка. Тот мой приятель был очень одаренным математиком; в частности, новые идеи он схватывал на лету и легко усваивал. При этом мне кажется, он обладал досадной склонностью иногда принимать за свои те из математических находок, о которых он в действительности услышал от кого-то другого.
Вообще, здесь кроется известная трудность; с ней в той или иной форме неизбежно сталкиваются все математики (и не только они). Ее нельзя объяснить одним лишь тщеславным стремлением каждого накопить побольше «заслуг», как реальных, так и воображаемых. Другое дело, что это большинство людей действительно этим страдает, и я здесь далеко не исключение. Но нельзя забывать, что понимание той или иной ситуации (в математике или где бы то ни было), вне зависимости от того, каким путем мы к нему приходим, - нечто по сути своей сугубо личное. Даже если вначале кто-то помог тебе выйти на верную дорогу, ты все равно идешь по ней на своих двоих, без попутчиков - и горизонты впереди открываются тебе одному. Ты внимательно всматриваешься в рисунок картины, к тебе приходит понимание; все это, повторяю, твой собственный, сугубо личный опыт. Видение, которое тебе так открылось, иногда можно передать другому; но и тогда твой собеседник воспримет его по-своему. Вот почему для того, чтобы разобраться, какова «заслуга» другого в формировании твоего нового видения - или понимания ситуации, к которому ты пришел - нужна огромная бдительность.
Сам-то я далеко не всегда отличался подобной бдительностью: право же, это последнее, о чем я в те годы беспокоился. Между тем, я определенно ожидал, что другие станут проявлять ее по отношению ко мне. Первым и единственным человеком, который заставил меня задуматься об этом, был Майк Артин. Как-то раз он сказал мне - с шутливым видом, словно речь шла о секрете Полишинеля - что, ухватив живую идею за загривок, нет смысла тут же делить ее на части, высчитывая, кому что по праву принадлежит. Иными словами, когда ты подходишь
Самодовольство и обновление
вплотную к сути того или иного вопроса, - так, что уже можешь, перегнувшись через край, заглянуть в самую глубину, - невозможно толком разобрать, что здесь придумал ты, а что тебе подсказал кто-то другой; да и незачем.
Поначалу это соображение привело меня в некоторое замешательство. Мои старшие товарищи - Картан, Дьедонне, Шварц и другие - не могли бы сказать мне ничего подобного. В правила профессиональной этики, которые я в свое время изучал на их примерах, это никак не вписывалось. И все же, я чувствовал, что в его словах - а главное, в беззаботной веселости его голоса - содержалась некая истина, до сих пор от меня ускользавшая; это сбивало с толку{82}. В том, как я относился к математике (и прежде всего к математическим результатам) всегда было очень много честолюбия. Майк же - совсем другой человек. Глядя на него, нельзя было понять: то ли он «всерьез» занимается математикой, то ли просто забавляется, как веселый мальчишка. Он как будто увлечен игрой по уши; но чтобы из-за нее не есть, не пить да ночей не спать - это уж извините.
22. Прежде чем глубже погрузиться в раздумья, оставив позади (обманчивую подчас) видимую поверхность, мне хотелось бы высказать одну мысль. Точнее, она сама спешит сорваться у меня с языка. Звучит она примерно так: математическая среда, в которой я обретался в пятидесятые и шестидесятые годы - итого, два десятилетия кряду - действительно была миром без ссор и конфликтов. Это само по себе достаточно необычно; здесь стоит задержаться и поразмыслить.
Стоило бы уточнить, что говоря о математической среде тех лет, я имею в виду довольно узкий круг математиков, то есть центральную часть моего «микрокосма». Это «ядро» составляли всего-то человек двадцать моих коллег: ближайшие друзья, с которыми мы часто встречались и подолгу спорили о математике. Я как-то не осознавал раньше, что большинство из них были членами Бурбаки (сейчас, когда я перебрал в памяти их имена, это открытие меня поразило). Спору нет, Бурбаки были сердцем и душой моего микрокосма. Почти все мои друзья-математики так или иначе имели отношение к группе. В шести-
десятые годы я сам уже вышел из ее состава, но с точки зрения общих интересов в математике моя связь с членами группы (такими, как Дьедонне, Серр, Тэйт, Ленг и Картье) была прочней, чем когда-либо. К тому же, я оставался завсегдатаем Семинара Бурбаки - а вернее, тогда-то я им и стал: большая часть моих бурбакистских докладов (по теории схем) относится именно к шестидесятым.
И, без сомнения, как раз в шестидесятые годы общий настрой в группе Бурбаки стал меняться: появился дух элитарности, избранности, и на месте прежней открытости мало-помалу выросла стена, отделявшая нас от мира. В то время я совсем не задумывался об этом. Это и понятно, ведь каждый из нас, в том числе и я, по-своему способствовал переменам; заметить их - значило признать свою ответственность. Все еще помню свое удивление, когда, в 1970 г., я обнаружил, до какой степени самое имя Бурбаки стало непопулярным в широких слоях математического мира (а до тех пор мне, кажется, и в голову не приходило, что этот мир отнюдь не сводится к Бурбакам и их ближайшему окружению). Для многих людей оно ассоциировалось со снобизмом, узкой догматичностью, культом «канонической» формы (в ущерб живому восприятию математической реальности), заумностью, выхолощенной искусственностью изложения и массой других неприятных вещей! И не то, чтобы Бурбаки пользовались дурной славой только среди обитателей пресловутого «болота»: в шестидесятые годы (а возможно, и раньше) мне доводилось слышать отзывы в том же духе от достаточно известных математиков «со стороны». На математику они смотрели иначе, чем мы, и «стиль Бурбаки» казался им просто невыносимым (15). Итак, математический мир разбился на два лагеря. Безоговорочно принимая сторону Бурбаков, я все же испытывал изумление и горечь: ведь