элемента в стабильном состоянии (повернутые под прямым углом друг к другу, или перпендикулярные, тетраэдры), а в нестабильном состоянии при преодолении порога устойчивости тетраэдры поворачиваются, создавая колебания, или кавитацию в ядрах всех атомов. Аналогичным образом можно сформулировать еще одно предположение: в конечном итоге будет открыта связь тетраэдрической геометрии с явлением запутанности фотонов.

Если это предположение верно, из него следует еще один вывод: колебания, или кавитация, в таких областях с высоким напряжением среды будет регистрироваться нами как скачки электронов на более высокую или низкую орбиту, сопровождающиеся эмиссией фотонов. То есть фотоэлектрический эффект представляет собой электромагнитную трехмерную сигнатуру инерциального и гравитационного эффекта в ядрах атомов и самой среде, который проявляется в пространстве с разными размерными свойствами, в точном соответствии с результатом исследований Брауна. Колебания можно представить как асимметрию в гексагональном сечении экватора сферы и двух вписанных в сферу тетраэдров. Другими словами, эта гексагональная структура отражает простую геометрию реакционного, или фазового, пространства любой природы, любой массы и размеров[336]. Геометрические размеры этой гексагональной структуры — как симметричной при перпендикулярном расположении тетраэдров, так и несимметричной — могут служить основой геометрии фазового пространства, явления запутанности фотонов, а также новых теорий клеточной структуры больших систем. Подробнее на этом мы остановимся чуть ниже.

Таким образом, мы можем предположить, что данная схема также является простым способом сказать следующее-. любой атом отражает напряжение — стабильное или нестабильное — среды. Поэтому в данной модели наблюдаемые явления, такие как заряд (протонов, электронов, нейтронов) и масса, являются результатом этого напряжения, а не его причиной[337]. И следовательно, в среде можно создавать напряжение, чтобы заставить любой элемент или сочетание элементов преодолеть порог устойчивости или, при меньшей величине напряжения, заставить любой элемент или сочетание элементов изменить свою конфигурацию.

Эта схема и ее огромный потенциал военного применения представляют собой истинную «звезду смерти», спрятанную в Гизе за Великой пирамидой[338].

Но как все это связано с Великой пирамидой и присутствием гармоник Планка в ее конструкции? Дело в том, что геометрические модели обладают масштабной инвариантностью — то есть все, что применимо к планетарной механике (то, чем занимался Хогланд), применимо и к объектам меньших размеров. В главе VII мы продемонстрировали, как кватернионный анализ приводит к безразмерному взаимодействию коэффициентов самих констант. Поэтому вопрос теперь формулируется так; «Имеет ли безразмерное взаимодействие констант тетраэдрическую основу?» То есть, предполагая, что любая система тетраэдров, вписанных в сферическую массу, отражает простейшую из возможных геометрию взаимоотношений и взаимодействия обычного трехмерного пространства (сфера) и гиперпространства (тетраэдры), можно ли вывести базовые арифметические «гармонические уравнения» соотношений фундаментальных геометрических и физических констант ?, ?, ?, Tb(постоянной Планка), L (длины Планка) и Мр (массы Планка)? Как это ни удивительно, но ответом на этот вопрос будет твердое «да».

Если представить, что наша сфера очень мала и ее радиус соответствует длине Планка L, то гармоническое значение этой величины, или коэффициент 6362, можно считать значением главного резонанса сферы этого радиуса. Учитывая, что этот радиус пересекается с тремя вершинами каждого тетраэдра в точках, расположенных на 19,5° северной или южной широты этой невероятно маленькой сферы пространства, можно нарисовать простой тригонометрический чертеж, отражающий взаимоотношение между обычным пространством и тетраэдрическим гиперпространством:

(Для тех, кто не знаком с математикой, следует пояснить, что нередко символ «d>> ошибочно считают алгебраическим символом, обозначающим число, которое нужно найти при решении задачи. Но это не так. Символ «d» означает «дифференциал», а если проще, то «малую часть» или «приращение» величины, обозначенной следующим символом. Таким образом, n = [n=dn] + dn.)

Это уравнение может быть записано в общем виде, поскольку число 0,866 близко к значению ?/?:

где n — любое число. В результате мы получаем первое тетраэдрическое гармоническое уравнение:

Это уравнение позволяет определить другие соотношения между универсальными геометрическими константами ?, ? и ?, и между единицами Планка Tb, L и Мр:

Это дает результаты с погрешностью 0,2 от целой гармоники. Более того, соотношение двух самых близких результатов дают точные приближения соотношений «Пифагорова комма», найденные в книге «Звезда Смерти Гизы». Далее появляется возможность вывести два других уравнения:

Еще интереснее тетраэдрические соотношения между геометрическими константами и массой Планка и длиной Планка.

Торран предположил существование тетраэдрической версии константы ?, которую он обозначил символом ?'. Если принять коэффициент для ? 314159, а для ?' 272070, то получаются следующие соотношения между ?' и ?:

Это дает следующие коэффициенты:

Разделив эти соотношения на коэффициенты длины Планка и массы Планка, получим:

Разница между этими значениями составляет 0,10327.

Другие исследователи отметили связь между постоянной тонкой структуры и коммой Пифагора.

Роберт Темпл, чью работу «Хрустальное солнце» («The Crystal Sun») мы уже упоминали, известен своим бестселлером об удивительных астрономических знаниях африканского племени догонов (о чем мы тоже упоминали), «Мистерия Сириуса» («The Sirius Mystery»). Позвольте процитировать его комментарии о глубоких астрономических знаниях, зашифрованных в Гизе, и о специфических взаимосвязях с «Пифагоровой коммой», которые подробно обсуждались в моей предыдущей книге «Звезда Смерти Гизы».

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату