оказывают катализаторы – вещества, увеличивающие скорость реакции (часто от нуля до очень больших значений), но не входящие в состав продуктов. Увеличение скорости реакции под влиянием катализаторов называется катализом. Во многих случаях катализаторы образуют с одним из реагирующих веществ промежуточное соединение, которое реагирует с другим исходным веществом, в результате получается продукт и высвобождается катализатор.

Иногда употребляют отрицательные катализаторы — ингибиторы, которые, наоборот, замедляют нежелательные химические реакции (например, коррозию металлов).

3. Температура. Для газовых реакций известно, что при повышении температуры на десять градусов (?Т = 10 К или ?t = 10 °C) скорость реакции возрастает в 2–4 раза (правило Вант-Гоффа). Для скорости реакции ?2 и ?1 при значениях температуры t2 и t1 имеем:

?2 = ?1 ?0,1(t2-t1),

где ? – температурный коэффициент скорости реакции, ? = 2–4.

Для реакций в растворах скорость также увеличивается с ростом температуры и часто в той же мере, как и для газовых реакций.

При повышении температуры возрастает число активных молекул, т. е. таких молекул, которые в момент столкновения обладают большей энергией и могут образовать продукты.

Как показывают исследования, активных молекул в реакционной среде при обычных условиях очень мало. Иначе все реакции между газами протекали бы мгновенно, и в воздухе не было бы, например, свободного кислорода, необходимого для дыхания. Реакции между газами при обычных условиях практически не идут (встречаются исключения, например, при 20 °C полностью протекает реакция 2NO + O2 = 2NO2).

4. Концентрация реагентов. Чтобы произошло взаимодействие, частицы реагирующих веществ в гомогенной среде должны столкнуться. Число столкновений пропорционально числу частиц реагирующих веществ в объеме реактора, т. е. молярным концентрациям этих веществ.

Чем большие количества веществ взяты для реакции в данном объеме системы, т. е. чем выше концентрация реагентов, тем больше число столкновений частиц и тем больше скорость реакции. Зависимость скорости реакции от концентрации реагентов распространяется на газовые смеси и растворы.

Установлено, что:

Скорость химической реакции прямо пропорциональна произведению молярных концентраций реагентов

если для реакции необходимо столкновение двух реагирующих молекул. Эта зависимость носит название кинетического закона действующих масс (К. Гулльберг, П. Воге, 1867)

Для гомогенной реакции А + В >… этот закон изображается уравнением

? = kcAcB,

где k – константа скорости реакции [л/(моль с)], зависящая от природы реагентов, присутствия катализатора и температуры, но не зависящая от концентрации реагентов и численно равная скорость реакции при условии сАсв = 1.

Для гетерогенной реакции А + В(ж, т) >… взаимодействие происходит лишь на поверхности конденсированного (жидкого, твердого) вещества, поэтому концентрация такого вещества не входит в выражение закона действующих масс: ? = kcA.

Для реакций, уравнения которых не отражают механизма протекания этих реакций, необходимо рассматривать каждую элементарную стадию отдельно. Тройные и более столкновения (А + В + В +… >) маловероятны, поэтому такие реакции (например, N2 + ЗН2 = 2NH3) протекают всегда в несколько элементарных стадий (А + В >). Кинетический закон действующих масс применим только к каждой из этих стадий, но не к уравнению химической реакции в целом.

12.2. Энергетика реакций

Любая реакция сопровождается выделением или поглощением энергии в форме теплоты. В исходных веществах химические связи разрываются, и на это энергия затрачивается (т. е. она при этом поглощается системой), в продуктах же, наоборот, химические связи образуются, и при этом энергия выделяется. Разность между затраченной и выделившейся энергией называется тепловым эффектом химической реакции (обозначается Q). Если затрата энергии выше, чем ее выделение, то тепловой эффект будет отрицательным, или эндо- эффектом (-Q) в противном случае – положительным, или экзо-эффектом (+Q).

Тепловой эффект является внешним признаком реакций, в термохимических уравнениях он указывается после продуктов:

Такая запись означает, что при сгорании 4 моль железа в 3 моль кислорода с образованием 2 моль оксида железа (III) выделяется 1648 кДж теплоты, а при взаимодействии 1 моль углерода (в виде кокса) и 1 моль углекислого газа с получением 2 моль угарного газа поглощается извне 173 кДж теплоты.

Тепловые эффекты прямой и обратной реакций одинаковы по числу, но противоположны по знаку. Например, реакция

(обработка 1 моль оксида кальция водяным паром в количестве 1 моль с образованием 1 моль гидроксида кальция) сопровождается экзо-эффектом Q = +108 кДж, тогда как обратная реакция

(разложение 1 моль гидроксида кальция на 1 моль оксида кальция и 1 моль водяного пара) сопровождается эндо- эффектом Q = -108 кДж.

При протекании реакций (особенно с участием газов) могут существенно меняться объем и температура реакционной системы. Если тепловой эффект определяется при постоянном давлении (1 атм для каждого газа в системе, а при отсутствии газов общее давление 1 атм) и постоянной температуре (обычно 298 К, или 25 °C), то он отвечает стандартной энтальпии реакции, характеризующей в целом всю систему (функция системы). Энтальпия реакции обозначается ?Н°, знак ?Н° противоположен знаку Q:

Значение ?Н° записывается после уравнения и отделяется от него запятой:

Реакции, протекающие с высоким экзо-эффектом, часто требуют только начального нагревания (инициирования), а далее протекают самопроизвольно, например процесс алюминотермии:

Помимо энтальпии, химическая система характеризуется еще одной функцией – стандартной энтропией реакции ?S° (кДж/К), связанной с неупорядоченностью системы (степенью беспорядка). Чем больше частиц в системе и чем выше ее температура, тем больше степень беспорядка. В идеальном кристалле (при абсолютном нуле температуры) степень беспорядка нулевая (идеальный порядок), в реальных твердых телах существует всегда некоторая степень беспорядка, в жидкостях она уже выше, но наибольшая степень беспорядка в газах, где молекулы не зависят друг от друга и двигаются весьма хаотично. Например, для льда, жидкой воды и водяного пара значения ?S° равны соответственно 0,039, 0,07 и 0,189 кДж/К.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

1

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату