что полеты космических аппаратов к планетам Солнечной системы немыслимы без ОТО. Даже портативные автомобильные навигаторы GPS и ГЛОНАСС действуют с учетом эффектов ОТО. Далее, в последние годы получены новые данные, свидетельствующие о справедливости ОТО в приближении сильного поля. Например, показано, что наблюдаемое укорочение орбитального периода радиопульсара в двойной системе PSR 1913 + 16, обусловленное потерей углового момента двойной системой за счет гравитационных волн, согласуется с предсказанием ОТО с точностью лучше 0,4 %. Измеренная величина эффекта Шапиро (задержка электромагнитного сигнала в гравитационном поле) в системе из двух радиопульсаров PSR J0737 -3039AB, плоскость орбиты которой лежит почти на луче зрения, согласуется с предсказанием ОТО с точностью до 0,1 %(!). К настоящему времени это служит наилучшей проверкой ОТО в пределе сильного поля. Наконец, стоит упомянуть и тот факт, что сейчас известно около тысячи кандидатов в черные дыры с массами от ~10 до миллиарда солнечных масс, все наблюдаемые свойства которых чрезвычайно похожи на свойства черных дыр, предсказываемые ОТО, и ни в одном случае из этого огромного числа объектов не удалось найти никаких противоречий с ОТО. Это позволяет обоснованно предполагать, что ОТО справедлива и в пределе экстремально сильных полей тяготения. Таким образом, нет никаких реальных оснований сомневаться в правомерности применимости ОТО для решения космологических задач.
1.2. Темная материя. В 1932 г. немецкий астроном Фриц Цвикки заметил, что кроме светящегося вещества галактик во Вселенной должны иметься еще и невидимые, «скрытые» массы, которые проявляют себя только своим тяготением. Он изучал скопление галактик в созвездии Волосы Вероники — крупное образование, содержащее тысячи звездных систем, подобных Туманности Андромеды или нашей Галактике. Галактики движутся в этом скоплении со скоростями, достигающими тысячи километров в секунду. Чтобы удержать их в объеме скопления, требуется тяготение, которое не способны создать одни только видимые, светящиеся массы самих галактик. Для этого необходимо более сильное тяготение, и согласно подсчетам Цвикки тут нужны дополнительные массы, которые примерно раз в 10 больше суммарной видимой массы галактик скопления.
Позднее, в 1970-е гг., усилиями астрономов СССР и США было обнаружено, что скрытые массы должны присутствовать не только в скоплениях галактик, но и в изолированных крупных галактиках. Я. Эйнасто, В. Рубин, Дж. Острайкер, Дж. Пиблс и их коллеги выяснили, что скрытые массы образуют невидимые гало крупных галактик. Эти гало — почти сферические образования, радиусы которых раз в 5-10 превышают размеры самих звездных систем. Такая крупная галактика, как, скажем, Туманность Андромеды или наша Галактика, состоит из звездной системы, погруженной в распределение невидимой массы, которое простирается на расстояния до сотни килопарсек (кпк) от центра галактики. Эти темные гало — как и дополнительные массы у Цвикки — проявляют себя только своим тяготением. Невидимое вещество, наполняющее гало галактик и скоплений, принято сейчас называть темной материей. Открытие темной материи — второе (после открытия космологического расширения) важнейшее событие в истории космологии.
1.3. Реликтовое излучение. В 1965 г. американские радиоастрономы А. Пензиас и Р. Вилсон обнаружили, что вся Вселенная пронизана излучением, приходящим к нам изотропно, т. е. равномерно из всех направлений. Это третье из крупнейших открытий в космологии (о нем подробно рассказано в книге [2]). Максимум в спектре этого излучения приходится на миллиметровые волны, причем сам спектр, т. е. распределение излучения по длинам волн или частотам совпадает по форме со спектром абсолютно черного тела. Положение максимума в спектре излучения отвечает температуре около трех градусов абсолютной шкалы. В современных наблюдениях эта температура измеряется исключительно точно: T = 2,725 ± 0,003 K. Это излучение называют микроволновым фоном Вселенной, или ещё реликтовым излучением. Если говорить о нем на языке квантов, то можно сказать, что в мире имеется равновесный газ фотонов, равномерно заполняющих всё пространство. В каждом кубическом сантиметре Вселенной содержится примерно 500 реликтовых фотонов.
Это открытие было отмечено двумя Нобелевскими премиями. Первая присуждена в 1978 г. Пензиасу и Вилсону, а вторая — в 2006 г. Дж. Смуту и Дж. Мэтеру, которые дали точное доказательство (в 1992 г.) того, что спектр излучения действительно является «чернотельным». Это было сделано с помощью американского спутника COBE (COsmic Background Explorer). Кроме того COBE измерил слабую — на уровне тысячных долей процента — анизотропию фонового излучения. Последняя представляет собой «отпечаток», оставленный на реликтовом фоне первоначально слабыми неоднородностями вещества ранней Вселенной; позднее эти неоднородности (сгущения вещества) дали начало наблюдаемым крупномасштабным космическим структурам — галактикам и скоплениям галактик (см. об этом в книге [3]).
Заметим, что космическое фоновое излучение регистрировалось ещё в 1957 г. в Пулковской обсерватории с помощью рупорной антенны, построенной Т.А. Шмаоновым, С.Э. Хайкиным и Н.Л. Кайдановским. Но, увы, никто тогда не придал этому значения. Слабую анизотропию излучения первыми заметили И.А. Струков и его сотрудники (Институт космических исследований РАН) с помощью российского космического аппарата «Реликт». От ГАИШ МГУ в этом эксперименте принимал участие доктор физико- математических наук, профессор М.В. Сажин.
1.4. Темная энергия. В 1998–1999 гг. две международные группы наблюдателей, одной из которых руководили Б. Смидт и А. Райсс, а другой — С. Перлматтер, установили, что наблюдаемое космологическое расширение происходит с ускорением: скорости удаления галактик возрастают со временем (об этом подробнее рассказывается, например, в книгах [4,5] и недавнем обзоре [6]). Открытие сделано с помощью изучения далеких вспышек сверхновых звезд определенного типа (Ia), которые замечательны тем, что они могут служить «стандартными свечами», т. е. источниками с известной собственной светимостью; на это их свойство обратил внимание ещё много лет назад астроном ГАИШ профессор Ю.П. Псковский. Из-за их исключительной яркости сверхновые можно наблюдать на очень больших, истинно космологических расстояниях, составляющих тысячи мегапарсек от нас. Как мы уже говорили выше, именно на этих расстояниях и проявляется эффект ускорения.
«Обычное» вещество не способно ускорять галактики, а лишь тормозит их разлет: взаимное тяготение галактик стремится сблизить одну с другой. Поэтому открытый астрономами факт ускоренного расширения указывает на то, что наряду с обычным веществом, создающим тяготение, во Вселенной присутствует и неизвестная ранее ни по астрономическим наблюдениям, ни по физическим экспериментам особая космическая энергия, которая создает не тяготение, а антитяготение — всеобщее отталкивание тел природы. При этом в космологическом масштабе антитяготение сильнее тяготения. Новая энергия получила название «темной энергии». Темная энергия действительно невидима — она не излучает, не рассеивает и не поглощает света (и всех вообще электромагнитных волн); она проявляет себя только своим антитяготением.
По совокупности различных наблюдений к настоящему времени установлена доля каждого космического компонента в общем энергетическом балансе современной Вселенной. Эти компоненты сейчас называют видами космической энергии. На долю темной энергии приходится примерно 75 % всей энергии мира; на долю темной материи — 20 %, на долю обычного вещества (его принято называть барионами) — около 5 %; на долю излучения — меньше десятой доли процента. Таков рецепт «энергетической смеси», заполняющей современную Вселенную.
Замечательно, что три из четырех фундаментальных открытий в космологии, о которых мы рассказали сейчас, были первоначально предсказаны теоретически. Феномен космологического расширения предвидел в 1922–1924 гг. петербургский математик А.А. Фридман, ставший в наши дни общепризнанным классиком науки о Вселенной (о его трудах и жизни см. в книге [7]). Существование фонового электромагнитного излучения с температурой в несколько градусов Кельвина предсказал в 1948–1953 гг. Г.А. Гамов, некогда ученик профессора Фридмана по Петербургскому (Ленинградскому) университету. Согласно построенной Гамовым теории Большого Взрыва (см. [2]), это излучение представляет собой остаток, реликт некогда очень горячего начального состояния Вселенной, имевшего место в первые минуты её расширения. Что касается космического антитяготения, то четкое представление о нем содержалось в работе Эйнштейна (1917 г.), положившей начало современной космологической теории. И только темная материя не была предсказана теоретически — этот тип вещества, или энергии, не предусмотрен стандартной моделью фундаментальной физики.
2. Реальность Большого Взрыва: космическая эволюция. В космологической литературе (весьма обширной и разнообразной на сегодняшний день) словам «Большой Взрыв» не всегда