«Электронное дерево».
В 1895 году известный физик Рентген обнаружил, что если на пути быстро летящих электронов, то есть притягиваемых очень высоким напряжением, поставить металлическую пластинку, то в месте падения электронов возникнут какие-то лучи, подобные лучам света, но совершенно невидимые нашим глазом.
После тщательного их изучения оказалось, что они обладают рядом чрезвычайно интересных свойств. Так, например, они легко проникают через любые совершенно непрозрачные для обычного света тела. Подобно световым лучам они производят почернение фотографической пластинки. Некоторые вещества под их воздействием начинают светиться видимым светом. Проходя через газы, они вызывают их ионизацию, то есть выбивают из газовых молекул электроны, и, наконец, они оказывают сильное специфическое воздействие на живые организмы и ткани. Эти таинственные, неизвестные до этого лучи стали называть X-лучами, или, по имени их изобретателя, лучами Рентгена.
Но Рентгену не удалось получить устойчивого, неизменного потока электронов. Поэтому и поток Х-лучей у него получался неравномерным по величине, а сами лучи были неоднородными по своим свойствам. И вот тогда, в 1913 году, американец Кулидж предложил использовать в качестве источника электронов в рентгеновской трубке раскаленное тело, то есть воспользоваться «эффектом Эдисона». Это произвело целый переворот в рентгенотехнике. Новые трубки оказались свободными от всех недостатков прежних трубок. Молодое «электронное растение» получило первое важное ответвление — трубки Кулиджа и Рентгена.
Трубка Рентгена-Кулиджа.
Несколько лет спустя, в 1916 году, «растение» дало еще один побег — электронно-лучевые трубки. Простейший вид такой трубки показывает рисунок на этой странице.
Простейшая электронно-лучевая трубка.
Нагреваемый катод К излучает электроны, которые притягиваются анодом А. Часть прилетевших на анод электронов проскакивает через небольшое отверстие в аноде и продолжает лететь узким пучком дальше. На пути этого узкого электронного пучка ставится стеклянный экран Э, покрытый особым веществом, которое обладает способностью светиться под влиянием ударяющих электронов. Таким образом место падения электронного пучка становится видимым.
Если на пути электронного пучка, поставить пластинки П1 и П2 и подать на них переменное напряжение, то они будут отклонять электронный пучок, и светящееся пятно нарисует на экране все изменения, происходящие с напряжением на пластинках.
Эта трубка сыграла огромную роль в открытии электрона и изучении его свойств. Ученому и инженеру она позволила видеть и записывать явления, происходящие в различных электрических цепях в течение чрезвычайно коротких промежутков времени.
Применение электронно-лучевой трубки в телевидении резко повысило качество применяемых изображений. Современное телевидение совершенно немыслимо без этого важнейшего прибора.
ЕЩЕ ОДНО «РАСТЕНИЕ»
Под сенью нашего «электронного дерева» взошло и стало быстро развиваться еще одно чудесное «растение».
В то время как первое «дерево» выросло из «эффекта Эдисона», второе ведет свое происхождение от другого эффекта — эмиссии электронов под действием света, или, сокращенно, фотоэффекта. Это «растение» носит название фотоэлемента.
Принцип устройства фотоэлемента довольно прост. На внутреннюю поверхность стеклянной колбы нанесен слой металла, являющегося катодом, из которого под действием света излучаются электроны. Наибольшей способностью излучать под действием света электроны обладают металлы: калий, натрий, рубидий и цезий. Они-то главным образом и применяются для фотокатодов.
Устройство фотоэлемента.
Вылетевшие из фотокатода электроны, как и в обычной электронной лампе, притягиваются положительно заряженным анодом. Анод, чтобы не загораживать свет, падающий на катод, делается в фотоэлементах в виде сетки или кольца. Хотя явление фотоэффекта известно сравнительно давно — оно открыто московским профессором Столетовым в 1888 году, — применяться фотоэлемент стал лишь недавно. Объясняется это в основном тем, что количество электронов, выбиваемых светом из фотокатода, не настолько велико, чтобы их можно было непосредственно подвести к громкоговорителю или другому «рабочему» прибору. Ток от фотоэлемента необходимо предварительно усилить по крайней мере в тысячу раз. Пока усилительная лампа не была усовершенствована, фотоэлемент находил ограниченное применение. Сегодня же, в связи с огромными успехами в области усиления электрических токов, фотоэлемент завоевывает все новые и новые позиции.
В «ДРЕМУЧЕМ ЛЕСУ»
Приведенные на странице 29 «деревья» наглядно изображают историческое развитие электронных приборов. Год за годом развивались и совершенствовались разнообразные лампы. Электронные приборы уже насчитывались тысячами. Но тут надо иметь в виду, что иностранные фирмы из своих коммерческих интересов весьма часто вводят в лампу какое-нибудь несущественное изменение и поднимают вокруг этой лампы рекламную шумиху. В результате появляется «новый» тип лампы, хотя ламп, подобных этой «новой», на рынке имеется добрый десяток. Так, только в Америке в одном лишь 1941 году различными фирмами было выпущено свыше 500 типов приемных и усилительных ламп. В это число не входят мощные генераторные лампы, электронно-лучевые трубки, трубки Рентгена, фотоэлементы и др. Общее количество различных типов электронных приборов, выпускаемых сегодня мировой радиопромышленностью, насчитывается многими тысячами.
Как же разобраться в таком хаосе? Чтобы ориентироваться в этом «дремучем лесу», мы на страницах 40–41 даем классификационную схему. На ней приведены лишь приборы, имеющие какие-то принципиальные отличия. Как видно на этой схемы, даже таких, в самой своей идее различных, электронных приборов наберется свыше двух десятков.
Классификационная схема электронных приборов.
ГЛАВА III
В ЦАРСТВЕ ВОЛШЕБНОЙ ЛАМПЫ
САМОЕ ГЛАВНОЕ В ЖИЗНИ
Как-то раз в годы процветания, или, как говорят американцы, в период просперити, одна американская газета провела среди своих читателей опрос: что они считают самым главным, самым существенным, самым необходимым в их жизни?
Ответы были самые разнообразные, неожиданные, а подчас и курьезные. Несомненно, эти читатели ответили бы сегодня по-иному. Но тогда список, получивший наибольшее количество голосов, выглядел так:
1. Президент Рузвельт.
2. Автомобиль.
3. Радио.
4. Жевательная резина.
Не вдаваясь в оценку этого списка, мы все же можем понять, какую важную роль играет радио в жизни американцев.
Только ли американцев? А можно ли представить себе хотя бы один наш день без радио?
Присмотревшись внимательно к нашей современной жизни, мы увидим, что на каждом шагу сталкиваемся в том или ином виде с радио. Иногда оно используется явно в открытом виде, иногда, наоборот, скрыто, замаскированно. И самое явное использование радио, самое приметное и широкое