один из слуг решительно утверждал, что слышал громкий разговор в очень поздний час.

На следующее утро, без четверти семь, один из слуг, войдя в комнату, нашел мистера Маубрея бездыханным — он лежал на полу с простреленной головой. Теперь мы подходим к одному странному обстоятельству этого дела. Пуля, пройдя сквозь голову убитого, попала в часы, которые стояли в кабинете. Она застряла прямо в середине циферблата, спаяв между собой три стрелки, ибо у часов была и секундная стрелка, которая обегала тот же циферблат, что и две другие. Но хотя три стрелки и соединились воедино, они могли поворачиваться как целое, и, к несчастью, слуги успели повернуть их несколько раз прежде, чем мистер Уайли Слаймэн прибыл на место. Но стрелки не могли двигаться порознь.

Опрос, проведенный полицией в окрестностях, привел к аресту в Лондоне подозрительного человека, которого опознали несколько свидетелей, утверждавших, что видели его в тех краях днем накануне преступления. Однако с несомненностью было установлено, в какое именно время он роковым утром уехал на поезде. Если преступление было совершено после его отъезда, то невиновность арестованного была бы доказана, так что оказалось крайне важным установить точное время пистолетного выстрела, звука которого никто в доме не слышал. На рисунке точно показано, в каком именно положении были найдены стрелки часов. Мистера Слаймэна полиция просила напрячь все свои способности и привлечь весь свой опыт, но, как только ему показали часы, он улыбнулся и сказал:

— Все крайне просто. Обратите внимание, что все стрелки находятся на равных расстояниях друг от друга. Так, часовая стрелка ровно на двадцать минут отстоит от минутной, то есть на треть окружности циферблата. Вы большое значение придали тому факту, что слуги крутили спаянные стрелки, но их действия не играют роли: спаянные стрелки свободно сидели на оси и неминуемо должны были сами повернуться, приходя в положение равновесия. Дайте мне чуть-чуть подумать, и я скажу вам точное время выстрела.

Мистер Уайли Слаймэн достал из кармана блокнот и начал что-то писать. Через несколько минут он передал инспектору полиции листок бумаги, на котором значилось точное время преступления. Оказалось, что задержанный был старым врагом мистера Маубрея; его обвинили на основании других открывшихся фактов, но прежде чем понести наказание, он подтвердил, что время, указанное мистером Слаймэном, соответствует действительности.

Сможете ли вы указать это время?

113. Деревянный брусок. У экономного плотника был деревянный брусок в 8 дюймов длиной, 4 дюйма шириной и 3¾ дюйма толщиной. Сколько кусков размером 2½ × 1½ × 1¼, дюйма можно из него вырезать? Все дело в том, как вы будете их вырезать. У большинства людей отходы превзойдут необходимую величину. Сколько кусков сможете вы получить из бруска?

114. Бродяги и бисквиты. Четыре веселых бродяги купили, заняли, нашли или добыли каким-то способом ящик бисквитов, который они решили поделить между собой поровну на следующее утро за завтраком. Ночью, когда бродяги крепко спали под ветвистым деревом, один из них подобрался к ящику, съел ровно четверть всех бисквитов и один лишний бисквит бросил собаке. Ближе к утру проснулся второй бродяга, ему в голову пришла та же мысль съесть четвертую часть бисквитов, а лишний бисквит он тоже бросил собаке. Третий и четвертый бродяги по очереди проделали то же самое, взяли четверть того, что нашли, и кинули по лишнему бисквиту собаке. Утром все четверо поделили между собой поровну остаток и вновь отдали лишний бисквит животному. Каждый заметил недостачу, но, думая, что он один тому виной, ничего не сказал. Какое наименьшее число бисквитов могло быть в ящике первоначально?

ЗАДАЧИ НА ШАХМАТНОЙ ДОСКЕ

От сильного порыва ветра каминная труба сорвалась с крыши и рухнула прямо под ноги случайному прохожему. Он сказал спокойно:

— Мне это ни к чему: я не курю.

Некоторые читатели, увидев головоломку на шахматной доске, склонны сделать столь же невинное замечание:

— Мне это ни к чему: я не играю в шахматы.

Такое отношение в значительной мере результат общераспространенного, но ошибочного убеждения, что обычная шахматная головоломка из тех, которые мы привыкли встречать в периодике (и которые по каким-то соображениям называют задачами), связана с самой игрой в шахматы. Однако в шахматной игре отсутствуют правила, которые обязывали бы нас делать мат в два, три или четыре хода, тогда как большинство позиций в этих головоломках таково, что у одного из игроков (если бы это происходило в реальной шахматной партии) преимущество оказалось бы настолько большим, что другой игрок просто признал бы свое поражение, не доиграв партию до конца. Решение этих головоломок вряд ли поможет вам (да и то косвенным образом) при игре в шахматы; известно, что мастера шахматных головоломок — весьма посредственные игроки, и vice versa[21]. Если случайно кто-то оказывается силен и в той, и в другой области, то это лишь исключение из правила.

И все же разделенная на клетки доска и ходы шахматных фигур сами по себе весьма примечательным образом приводят к изобретению наиболее занимательных головоломок. Здесь имеется такой простор для всевозможных вариаций, что истинный любитель головоломок не сможет пройти мимо. Именно охраняя интересы тех читателей, которые пугаются одного вида шахматной доски, я публиковал первоначально головоломки этого типа под различными причудливыми одеждами. Одни из этих задач я все еще оставляю в завуалированном виде, другие же я перевел на язык шахматной доски. В большинстве случаев читателю не потребуются вообще никакие познания в области шахмат, но все же для тех, кто не знаком с терминологией, ходами и обозначениями шахматной игры, я ниже дам краткие пояснения.

Сначала мы будем иметь дело с некоторыми вопросами, относящимися к самой шахматной доске, затем — с некоторыми статическими задачами, связанными поочередно с ладьей, слоном, ферзем и конем, затем — с динамическими головоломками, связанными с теми же шахматными фигурами, и, наконец, речь пойдет о смешанных головоломках на шахматной доске. Я надеюсь, что формулы и таблицы, приведенные после статических головоломок, окажутся интересными сами по себе, поскольку публикуются впервые.

Шахматная доска

Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату