103. Метро. На рисунке вы видите план метро. Стоимость проезда на любое расстояние одинакова, пока вы не проехали дважды по одному и тому же участку пути во время той же поездки. Один пассажир, у которого масса свободного времени, ездит ежедневно из А в F. Сколько различных путей он может выбрать при этом? Например, он может поехать прямым путем через А, В, С, D, E, F или же он может избрать один из длинных путей вроде пути через А, В, D, С, В, С, E, D, E, F.
Стоит отметить, что между некоторыми станциями имеются дополнительные линии и, выбирая их, пассажир может варьировать свой полный путь. Многие читатели найдут эту маленькую задачку весьма запутанной, хотя ее условия очень просты.
104. Шкипер и морской змей. Мистер Саймон Софт-лейг большую часть своей жизни провел между Тутин-бек и Финчерч-стрит, поэтому его морские познания были весьма ограниченными. Естественно, что, отправившись отдыхать на южное побережье, он решил воспользоваться этим случаем, чтобы их пополнить, и стал «выуживать» сведения у местных жителей.
— Я думаю, — обратился однажды утром мистер Софт-лейг к жизнерадостному «просоленному» шкиперу, — вы много интересного повидали в бурных морях?
— Будь я проклят, сэр, немало! — сказал шкипер.— Наверное, вам никогда не приходилось видеть ванильный айсберг, или русалку, развесившую свои вещи для просушки на линии экватора, или голубокрылую акулу, гоняющуюся в воздухе за своей добычей, или морского змея...
— Вы в самом деле видели морского змея? Я считал, что их существование пока твердо не установлено.
— Твердо не установлено! Вы бы не говорили так, если бы увидели своими глазами одного из них. Впервые со мной это случилось, когда я плавал шкипером на «Соси Сэлли». Мы огибали мыс Горн с грузом креветок, взятым с тихоокеанских островов, когда, взглянув за борт, я увидел огромное длинное чудовище. Голова его торчала из воды, а глаза метали искры. Я тотчас приказал спустить шлюпку, а сам бросился вниз за саблей (той самой, которой я убил короля Чоуки, вождя дикарей, съевших нашего юнгу), и мы пустились в погоню. Ну так вот, короче говоря, когда мы поравнялись с этим змеем, я взмахнул своей саблей и, прежде чем вы успели бы сказать «Том Боулинг», рассек его на три части равной длины, которые мы и доставили на борт «Соси Сэлли». Что я с ними сделал? Продал парню из Рио. И что бы вы думали он из них сделал? Покрышки для своего автомобиля — стоит больших трудов проколоть кожу морского змея.
— Насколько длинным было это существо? — спросил Саймон.
— Каждая часть в длину равнялась трем четвертым длины части, сложенным с тремя четвертями якорной цепи. Вот небольшая головоломка для вас, юный джентльмен. Сколько якорных цепей должен иметь в длину морской змей?
105. Благотворительное общество. После четырех с половиной месяцев тяжелой работы леди из одного благотворительного общества были так довольны тем, что лоскутное одеяло для дорогого помощника приходского священника наконец-то закончено, что на радостях все перецеловали друг друга, за исключением, разумеется, самого застенчивого молодого человека, поцеловавшего лишь своих сестер, за которыми он зашел, чтобы проводить их домой. Словом, было полно «чмоканий» — целых 144. Насколько дольше леди делали бы свою работу, если бы сестры упомянутого помощника приходского священника играли в теннис вместо того, чтобы посещать собрания благотворительного общества? Разумеется, мы должны принять, что леди посещали собрания регулярно, и я уверен, что все они работали одинаково хорошо. Взаимный поцелуй здесь считается за два «чмоканья».
106. Приключения улитки. Простой вариант головоломки о взбирающейся улитке знаком каждому. Мы знаем ее с детства, когда нам старались преподать урок того, что, подумав, ты в состоянии дать верный ответ. Вот популярный вариант головоломки.
Улитка поднимается по шесту высотой в 12 футов, причем каждый день она поднимается на 3 фута вверх, а каждую ночь соскальзывает на 2 фута вниз. Через какое время она доберется до верхушки шеста? Разумеется, мы ждем, что ответ равен 12 дням, ибо на самом деле улитка за каждые сутки продвигается на 1 фут. Но современного ребенка не так-то легко провести. Он отвечает, и довольно верно, что к концу девятых суток улитка оказывается в 3 футах от верхушки шеста и, следовательно, добирается до цели на десятый день, поскольку соскальзывания вниз не играют роли после того, как она достигнет верха.
Давайте, однако, рассмотрим первоначальный вариант этой истории. Жили-были два философа. Однажды они прогуливались в своем саду, когда один из них обнаружил весьма респектабельную представительницу вида Helix aspersa, настоящую альпинистку, совершающую рискованное восхождение по стене высотой в 20 футов. Изучая след, этот джентльмен установил, что улитка каждый день поднимается на 3 фута, а каждую ночь спит и соскальзывает вниз на 2 фута.
— Прошу, скажи мне, — спросил у него приятель, — сколько времени потребуется леди Улитке, чтобы добраться до верхнего края стены и спуститься вниз по другой стороне? Край стены, как ты знаешь, очень острый, так что, добравшись до него, она сразу же начнет спускаться, причем теперь уже за день она будет опускаться на такое же расстояние, на какое раньше поднималась, а ночью будет спать и соскальзывать вниз, как и раньше.
Быть может, мои читатели вместе с приятелями-философами захотят подсчитать точное число дней. Разумеется, в головоломках такого типа предполагается, что сутки делятся пополам на 12 дневных и 12 ночных часов.
107. Четыре принца. Владения одного восточного монарха представляли собой правильный квадрат. Однажды он обнаружил, что его четыре сына не только чинят козни друг против друга, но тайно бунтуют и против него самого. Выслушав своих советников, король решил, что не стоит заточать принцев в темницу, и распорядился отправить их в четыре угла страны, где каждому выделялась треугольная территория равной площади, границы которой принц не смел