Результатом же авторитетного высказывания Гильберта было то, что Бругмансу никто не поверил. Правда, позже его опыты повторил французский ученый Анри Беккерель (дед знаменитого Анри Бекке-реля, открывшего радиоактивность урана) и пришел, естественно, к тому же результату. Мало-помалу ученые склонились в мысли, что висмут все-таки отталкивается магнитом, но это исключение из правил. Мнение, что только три металла – железо, никель и кобальт притягиваются к магниту, а все остальные вещества безразличны к нему, господствовало в науке вплоть до 1845 г. Потому что именно в этом году великий английский ученый Майкл Фарадей (1791—1867) установил, что нет в природе веществ, полностью безразличных к магниту. Фарадей верил, что природные силы едины и магнитные свойства присущи всем существующим в природе веществам.

Чтобы выявить даже ничтожную способность тел притягиваться или отталкиваться магнитом, Фарадей подвешивал эти тела на тонкой длинной нити между полюсами мощного электромагнита. Чем длиннее была нить, тем меньше требовалось силы, чтобы отклонить – притянуть или оттолкнуть – тело. Ведь при отклонении подвешенного тела оно движется по дуге и чутъ-чутъ поднимается. Сила притяжения Земли стремится возвратить тело в исходное, наиболее низкое положение и препятствует отклонению. Но чем нить длиннее, тем меньше кривизна дуги и тем меньше требуется усилия, чтобы ее отклонить. Каким бы тяжелым ни был груз, хоть в сотни тонн, если он подвешен на длинном канате, рабочие-монтажники легко отклоняют его руками, точно нацеливая на место приземления.

Таким методом Фарадей проверил тысячи веществ и убедился, что абсолютно все исследуемые тела различным образом, в разной мере, но реагируют на магнитное поле. Несколько металлов и сплавов – ферромагнетики – сильно притягиваются магнитом. Большее количество веществ, которые Фарадей назвал парамагнетиками, притягиваются, а огромное количество веществ – все остальные вещества, кроме ферромагнетиков и парамагнетиков, – отталкиваются магнитом. Их Фарадей назвал диамагнетиками.

Слова «парамагнетики» и «диамагнетики» отличаются приставками «пара» и «диа». Эти приставки по- гречески означают «вдоль» и «поперек». Если взять стерженьки из парамагнетика и диамагнетика, подвесить их на нити или поставить на иглу, и внести в поле между двух полюсов магнита, то поведут они себя по-разному. Парамагнитный, как и ферромагнитный, стерженек, концы которого притягиваются к полюсам магнита, расположится вдоль силовых линий поля – от полюса к полюсу (рис. 338, а). Диамагнитный же стерженек, концы которого при приближении к полюсу магнита приобретают ту же полярность, будет стремиться занять такое положение, чтобы концы были подальше от любых полюсов магнита, т. е. перпендикулярно силовым линиям магнитного поля (рис. 338, б). Отсюда и названия этих магнетиков. Число диамагнетиков огромно, оно, безусловно, больше списка, который составил Фарадей на основании своих опытов: «Иод, воск, гуммиарабик, слоновая кость, баранина вяленая, говядина вяленая, говядина свежая, кровь свежая, кровь высушенная, хлеб, китайская тушь, берлинский фарфор, шелковичный червь, древесный уголь… этот список можно перечислять очень долго. Даже сам человек – тоже диамагнетик».

Рис. 338. Положение парамагнитного (а) и диамагнитного (б) стерженьков между полюсами магнитов

«Если бы можно было подвесить человека на достаточно чувствительный подвес, – писал Фарадей, – и поместить в магнитное поле, то он расположился бы поперек силовых линий, так как все вещества, из которых он составлен, включая кровь, обладают этим свойством».

Чтобы подчеркнуть, насколько всеобъемлющ диамагнетизм, говорят, что все вещества в природе – диамагнетики; как исключение из правила встречаются парамагнетики, и совсем уж редко – ферромагнетики. А ведь все время считалось, что магнитными свойствами обладают только эти «редчайшие» ферромагнетики!

Рис. 339. Пламя свечи «выталкивается» из магнитного поля

Но ведь Гильберт не мог не знать, что пламя свечи отталкивается от полюса магнита, выталкивается из магнитного поля, так как продукты сгорания диамагнитны (рис. 339). К тому же Гильберт часто помещал куски железа и магниты на плавающую пробку и наблюдал их притяжение, отталкивание одноименных полюсов, ориентировку магнита на полюса Земли. Что стоило ему, заподозрив отталкивание каких-то веществ, находящихся в составе пламени, от магнита, поместить копоть, сажу или даже кусок свечки на пробковый плотик и поднести к нему сильный магнит? Это нужно было бы сделать хотя бы для того, чтобы убедиться в невозможности феамедов. Тысячи и тысячи разнообразных опытов провел Гильберт, а этого опыта не стал проводить, потому что не видел в нем смысла, будучи заранее убежденным, что веществ, отталкиваемых магнитом, не может быть. А зря!

Возвращаясь к рукотворному «гробу Магомета» доктора В. Браунбека, нужно заметить, что подвешены в магнитном поле были именно диамагнетики – висмут и графит. Первый весил 8 миллиграммов, а второй – 75. Напряженность магнитного поля между полюсами магнита составляла 23 000 эрстед, что очень много.

Что за подвеска – магнитная?

В 1939 г. немецкий ученый В. Браунбек доказал, что в принципе подвесить гроб Магомета возможно. Для этого лучше всего было бы изготовить его из графита, хотя годен деревянный, он и так диамагнитен. Но исполнить эту затею трудно: для подвешивания таких массивных предметов нужно магнитное поле чудовищной напряженности огромного объема.

Доктор Браунбек использовал для своих опытов электромагнит, иначе с помощью постоянных магнитов того времени он не смог бы получить такую высокую напряженность магнитного поля. Но электромагнит требовал постоянной подпитки током. С энергетической точки зрения получалось даже обидно – прожорливый электромагнит, способный поднимать тонны, поднимает миллиграммы.

В 1956 г. голландский ученый А. Боердик осуществил бесконтактный подвес, причем без расхода электроэнергии. Опыт Боерди-ка состоит в следующем: над полусферой из сильного диамагнетика – графита вертикально устанавливается цилиндрический постоянный магнит. А в зазор между ними помещают маленький, массой около 2 миллиграммов, магнитик в виде микроскопической шайбочки размером с булавочную головку. Магнитик намагничен так, что один торец его – Северный полюс, другой – Южный.

И магнитик повисает в этом зазоре (рис. 340).

Рис. 340. Опыт А. Боердика – подвес в поле постоянного магнита:

1 – полусфера из графита; 2 – большой магнит; 3 – маленький магнитик

Почему это происходит? С одной стороны, диамагнетик графит пытается оттолкнуть от себя магнитную шайбочку. Но шайбочка, даже если сил диамагнетика хватило для этого, все равно свалилась бы или повернулась набок. Диамагнетик и не рассчитывался на это – он просто оказывает посильную помощь магниту, чтобы только оторвать магнитную шайбочку от своей поверхности. К тому же магнит центрирует эту шайбочку, не дает ей повернуться набок или на ребро.

Сил магнитного притяжения недостаточно для того, чтобы оторвать предмет с какой-нибудь поверхности и молниеносно притянуть его к себе. Их хватает только на то, чтобы с помощью диамагнетика чуть-чуть приподнять шайбочку, после чего сила диамагнетического отталкивания графита резко уменьшится. Так и висит магнитная шайбочка, не будучи в состоянии ни упасть на графит, ни притянуться к полюсу магнита. Надо ли говорить, что парящий магнитик и большой магнит обращены друг к другу противоположными полюсами.

Чей подвес оказался лучше – Браунбека или Боердика? Трудно сказать. Тут приходит на ум очень

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату