Еще за 250 лет до Рождества Христова царь Гиерон поручил ювелиру изготовить ему золотую корону, передав при этом мастеру соответствующее количество золота. Корона была изготовлена, но, усомнившись в честности мастера, царь, согласно легенде, поручил своему другу и родственнику Архимеду проверить честность ювелира. Хотя корона весила столько, сколько было отпущено на нее золота, царь заподозрил, что она изготовлена из сплава золота с другими, более дешевыми, металлами. Архимеду было поручено узнать, не ломая короны, есть в ней примесь или нет. Точно неизвестно, каким методом пользовался Архимед, но логично предположить следующее. Сначала он нашел, что кусок чистого золота в 19,3 раза тяжелее такого же объема воды. Иначе говоря, плотность золота в 19,3 раза больше плотности воды. Но надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.

Взвесить корону было легко, но как найти ее объем? Ведь корона была очень сложной формы. Долго мучился Архимед над этой задачей. И вот однажды, когда он, находясь в бане, погрузился в наполненную водой бадью, его внезапно осенила мысль, давшая решение задачи. Ликующий и возбужденный своим открытием, Архимед выскочил из бадьи и, как был нагой, побежал по улицам с криком: «Эврика! Эврика!», что значит «Нашел! Нашел!»

Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он определил выталкивающую силу, равную весу воды в объеме короны. Определив затем объем короны, он смог уже определить ее плотность, а зная плотность, ответить на вопрос царя: нет ли примесей дешевых металлов в золотой короне?

Легенда говорит, что плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.

Историки рассказывают, что задача с золотой короной Гиерона побудила Архимеда заняться вопросом о плавании тел. Результатом этого было появление замечательного сочинения «О плавающих телах», которое дошло до нас. Закон плавания тел сформулирован Архимедом следующим образом:

«Тела, которые тяжелее жидкости, будучи опущены в нее, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме тела».

Надо сказать, что в любом газе (например, воздухе) также действует закон Архимеда. Здесь становится актуальным шуточный вопрос: что тяжелее – 1 т железа или 1 т дерева? Не подумав, отвечают обычно, что 1 т железа тяжелее; подумав, говорят, что 1 т – она и есть 1 т и вес 1 т железа, дерева, и чего бы то ни было, одинаков.

Но Я. И. Перельман утверждает, что тяжелее будет 1 т дерева. Вот как он это доказывает:

«Дело в том, что закон Архимеда применим не только к жидкостям, но и к газам. Каждое тело в воздухе „теряет“ из своего веса столько, сколько весит вытесненный телом объем воздуха.

Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить их истинные веса, нужно «потерю» прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 т + вес воздуха в объеме дерева; истинный вес железа равен 1 т + вес воздуха в объеме железа.

Но 1 т дерева занимает гораздо больший объем, нежели 1 т железа (раз в 15), поэтому истинный вес 1 т дерева больше истинного веса 1 т железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит 1 т, больше истинного веса того железа, которое весит в воздухе также 1 т.

Так как 1 т железа занимает объем в 1/8 м3, а 1 т дерева – 2 м3, то разность в весе вытесняемого ими воздуха должна составлять около 2,5 кг. Вот насколько 1 т дерева в действительности тяжелее 1 т железа!»

Автор не согласен с такой трактовкой этого шуточного вопроса и считает, что 1 т железа весит больше 1 т дерева.

1 т, или 1 000 кг, – это мера не силы, а массы вещества. При этом безразлично, где оно находится – в воде, в воздухе или вакууме. Если мы взвешиваем это вещество в вакууме, то получаем, что сила тяжести, равная весу Р, есть произведение массы m на ускорение силы тяжести g:

P = mg.

При взвешивании в воздухе часть веса «теряется» – вверх действует выталкивающая сила воздуха; но она больше у дерева, так как объем больше. Поэтому 1 т железа будет весить больше 1 т дерева, если взвешивают в обычных условиях, – в воздухе. То есть 1 т железа будет тяжелее тонны дерева, что и требовалось доказать. Кстати, 1 т водорода будет иметь вообще отрицательный вес, и немалый. В воздухе 1 т водорода может поднять более 14 т железа!

Но мы отвлеклись от темы. Как же все-таки подделать золото, чтобы это никакой Архимед не определил?

При Гиероне это было невозможно, а сегодня – пожалуйста! Надо только, чтобы тот металл, которым мы хотим заменить золото, имел плотность, равную плотности самого золота или больше ее – для получения сплава с более легким металлом. А таких очень и очень немного, и, в основном, они дороже самого золота. Это осмий с плотностью 22,5 т/м3, иридий – 22,4 т/м3, платина – 21,5 т/м3, рений – 21,0 т/м3. Золото, как известно, имеет плотность 19,3 т/м3. Даже уран имеет меньшую плотность – 19,1 т/м3, да он и радиоактивен. Далеко отстает «тяжелый» свинец – 11,3 т/м3.

Но есть один-единственный металл, достаточно дешевый и в чистом виде пластичный (из него тянут тончайшие проволоки), известный нам всем вольфрам, плотность которого совпадает с плотностью золота с большой точностью. Вольфрам идет, кроме всем известных волосков для электролампочек, на твердосплавные резцы, на специальные электроды, как легирующая добавка в металлы, и мало ли на что еще…

Конечно, не надо сплавлять вольфрам с золотом – это трудновато и ни к чему – непонятно, какой будет цвет у сплава. Надо только (Запомните, честные люди! Мошенники давно знают об этом) изготовить изделие – монету, слиток, кольцо и т. д. из вольфрама, а затем покрыть тонким слоем золота. Это можно сделать и гальваническим способом, и старинным – амальгамированием.

В ртути, как известно, растворяются многие металлы, в том числе и золото. В старину таким раствором – амальгамой натирали купола церквей и другие изделия для их золочения. Только помните, что ртуть крайне опасна для дыхания. Не имейте с ней дела без специальной вытяжки!

Вот мы и получили изделие, которое по плотности от золота не отличишь. Ювелиры пробуют золото «кислотой» – царской водкой. Здесь это не поможет – на поверхности чистое золото. Остается пилить, как это делал Шура Балаганов с «золотой» гирей Корейко. Но не каждый позволит пилить его ювелирное украшение!

Определить подделку можно попробовать разными способами. При этом следует помнить, что у вольфрама с золотом лишь плотность одинакова, а многие другие показатели разные. Для неповрежденного изделия, такими показателями будут: теплоемкость; теплопроводность; электропроводность, особенно зависимость ее от температуры, которая у вольфрама специфическая, и т. д. Только чрезвычайно трудно все эти показатели измерить достаточно точно; это очень дорогие процедуры. Еще раз повторим: автор пишет это для честных читателей, чтобы они были бдительны и не покупали «драгметаллы» с рук. А о том, что мошенники знают об этом способе, автору известно из собственного опыта.

Однажды автора попросил его знакомый (из «крутых») определить подлинность проданного ему червонного золотого слитка. Архимедова проба на плотность показала, что слиток золотой, проба кислотой – то же. И тогда автор попробовал старинный способ – пробу на зуб, т. е. на твердость. Так раньше определяли подлинность золотых монет. И народный метод не подвел – слиток оказался тверже обычного червонного золота 96-й пробы, из которого раньше чеканили монеты. Конечно, так не все попробуешь, метод этот повреждающий – на золоте остается маленькая вмятина. Но для слитка это не столь важно.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату