оценивать живой сотрудник.

Кроме социальных сетей, «приманка» реляционного обучения — возможность разобраться в механизмах работы живой клетки. Клетка — сложная метаболическая сеть, где гены кодируют белки, регулирующие другие гены. Это длинные, переплетающиеся цепочки химических реакций, продукты, мигрирующие из одной органеллы в другую. Независимых сущностей, которые делают свою работу изолированно, там не найти. Лекарство от рака должно нарушить функционирование раковой клетки, не мешая работе нормальных. Если у нас в руках окажется точная реляционная модель обоих случаев, можно будет попробовать много разных лекарств in silico, разрешая модели делать выводы об их положительных и отрицательных эффектах, и, выбрав только хорошие, испытать их in vitro и, наконец, in vivo.

Как и человеческая память, реляционное обучение плетет богатую сеть ассоциаций. Оно соединяет воспринимаемые объекты, которые робот вроде Робби может усвоить путем кластеризации и уменьшения размерности, с навыками, которые можно приобрести путем подкрепления и образования фрагментов, а также со знанием более высокого уровня, которое дают чтение, учеба в школе и взаимодействие с людьми. Реляционное обучение — последний кусочек мозаики, заключительный ингредиент, который нужен нам для нашей алхимии. Теперь пришло время отправиться в лабораторию и превратить эти элементы в Верховный алгоритм.

ГЛАВА 9

КУСОЧКИ МОЗАИКИ ВСТАЮТ НА МЕСТО

Машинное обучение — это и наука, и технология, и обе составляющие дают нам подсказки, как их объединить. В науке объединяющие теории часто начинаются с обманчиво простых наблюдений: два не связанных на первый взгляд феномена оказываются сторонами одной медали, и осознание этого факта, как первая костяшка домино, порождает каскад новых открытий. Упавшее на землю яблоко и луна в небе: и то и другое вызвано гравитацией, и — правда это или выдумка, — когда Ньютон разобрался в природе этого явления, гравитация оказалась ответственной за приливы, предсказание равноденствий, траектории комет и многое другое. В повседневной жизни электричество и магнетизм не сопровождают друг друга: одно дело — вспышка молнии, а совсем другое — притягивающая железо руда, причем и то и другое встречается довольно редко. Но когда Максвелл понял, как изменение электрического поля порождает магнетизм и наоборот, стало ясно, что сам свет — это тесный союз обоих явлений, и сегодня мы знаем, что электромагнетизм далеко не редок и пронизывает всю материю. Периодическая система элементов Менделеева не только упорядочила все известные элементы всего в двух измерениях, но и предсказала, где искать новые. Наблюдения на борту «Бигля» внезапно обрели смысл, когда «Опыт закона о народонаселении» Мальтуса подсказал Дарвину естественный отбор в качестве организующего принципа. Как только Крик и Уотсон с помощью структуры двойной спирали объяснили загадочные свойства ДНК, они увидели, что эта молекула может реплицировать саму себя, и начался переход биологии от стадии «собирания марок» (как уничижительно назвал ее Резерфорд) к единой науке. В каждом из этих случаев оказывается, что у обескураживающе разнообразных наблюдений есть общая причина и, когда ученые ее находят, становится возможным использовать ее для предсказания новых явлений. Аналогично, хотя алгоритмы машинного обучения, с которыми мы познакомились в этой книге, могут показаться довольно несхожими — некоторые основаны на работе мозга, некоторые — на эволюции, а некоторые — на абстрактных математических принципах, — на самом деле у них есть много общего, и получившаяся в результате теория обучения принесет много новых прозрений.

Не все знают, что многие из важнейших технологий — результаты изобретения единого, объединяющего механизма, который делает то, для чего раньше требовалось много разных инструментов. Интернет — сеть, соединяющая между собой сети. Без нее каждый тип сети нуждался бы в собственном протоколе, чтобы контактировать с другими, как мы нуждаемся в отдельном словаре для каждой языковой пары. Протоколы интернета — это эсперанто, дающее каждому компьютеру иллюзию прямого разговора с любым другим компьютером, и это позволяет электронным письмам и интернету игнорировать детали физической инфраструктуры, по которой они передаются. Реляционные базы данных делают нечто схожее с корпоративными приложениями, позволяя разработчикам и пользователям мыслить в категориях абстрактных реляционных моделей и игнорировать способы, которыми компьютеры отвечают на запросы. Микропроцессор — совокупность цифровых электронных элементов, которая может имитировать любое другое собрание. Виртуальные машины позволяют одному компьютеру выдавать себя за сотню компьютеров для сотни разных людей одновременно и делают возможным облачное хранение данных. Графические пользовательские интерфейсы позволяют нам редактировать документы, электронные таблицы, презентации и многое другое с использованием общего языка окон, меню и кликов мыши. Компьютер сам по себе — объединяющее, единое устройство, способное решать любую логическую или математическую проблему при условии, что мы сумеем его соответствующим образом запрограммировать. Даже электричество — своего рода объединитель: его можно получать из многих источников — угля, газа, ядерной реакции, воды, ветра, солнца, — и у него бесконечное множество применений. Электростанция не знает и не хочет знать, как будет потребляться вырабатываемый ею ток, а фонарь в подъезде, посудомоечная машина и новенькая Tesla не помнят, откуда взялось питающее их электричество. Электричество — это эсперанто в мире энергии. Верховный алгоритм — это объединитель в мире машинного обучения: он позволяет любому приложению использовать любой обучающийся алгоритм, абстрагируя эти алгоритмы в общую форму — единственную, которую нужно знать приложениям.

Наш первый шаг к Верховному алгоритму будет на удивление простым. Как оказывается, несложно соединить много разных обучающихся алгоритмов в один, используя так называемое метаобучение. Его используют Netflix, Watson, Kinect и бесчисленное множество других программ, и это одна из самых мощных стрел в колчане машинного обучения. Это также ступенька к более глубокому объединению алгоритмов, о котором мы поговорим дальше. 

Из многих моделей — одна

Вот вам задача: за 15 минут соедините деревья решений, многослойные перцептроны, системы классификации, наивный байесовский алгоритм и метод опорных векторов в один алгоритм, который будет обладать лучшими свойствами каждого из элементов. Быстро: что вы можете сделать? Очевидно, что детали отдельных алгоритмов в нем использовать нельзя: просто не хватит времени. Давайте попробуем следующее решение. Представьте, что каждый из обучающихся алгоритмов — эксперт в комитете. Каждый внимательно рассматривает подлежащий классификации случай — какой диагноз поставить пациенту? — и уверенно дает прогноз. Вы сами — не эксперт, а председатель этого комитета, и ваша работа — объединить рекомендации в окончательное решение. В руках у вас, по сути, новая проблема классификации, где вместо симптомов пациентов входом будет мнение экспертов, но машинное обучение можно применить к этой проблеме таким же образом, как эксперты применяли его к исходным данным. Такой подход называется метаобучением, потому что это обучение обучающимся алгоритмам. Сам метаалгоритм может быть любым, от дерева решений до простого взвешенного голосования. Чтобы узнать веса или дерево решений, атрибуты каждого исходного примера заменяются прогнозами обучающихся алгоритмов. Алгоритмы, которые часто предсказывают правильный класс, получают высокий вес, а неточные будут чаще игнорироваться. В случае дерева решений использование обучающегося алгоритма может зависеть от предсказаний других алгоритмов. Как бы то ни было, чтобы получить прогноз алгоритма для данного примера, сначала надо применить алгоритм к исходному обучающему набору, исключив этот пример, и использовать получившийся в результате классификатор, иначе есть риск, что в комитете будут доминировать алгоритмы, страдающие переобучением, поскольку они могут предсказывать правильный класс, просто его запоминая. Победитель Netflix Prize использовал метаобучение для соединения сотен алгоритмов машинного обучения. Watson использует его для выбора окончательного ответа из имеющихся кандидатов. Нейт Сильвер соединяет результаты опросов аналогичным образом, чтобы спрогнозировать результаты выборов.

Этот тип метаобучения называют стэкингом, а придумал его Дэвид Уолперт, автор теоремы «Бесплатных обедов не бывает», с которой мы познакомились в главе 3. Еще более простой метаалгоритм — это бэггинг, изобретенный статистиком Лео Брейманом. Бэггинг генерирует случайные вариации обучающего набора путем перевыборки, применяет к каждой

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату