В чем тут дело? Это легко понять, глядя на таблицу 4.7. Частное от деления результата «Единой России» на 9 оказывается больше, чем частное от деления результата КПРФ на 3. Иными словами, «цена» 9-го мандата у «Единой России» выше, чем «цена» 3-го мандата у КПРФ. Поэтому, исходя из логики метода, «Единая Россия» должна получить 9-й мандат раньше, чем КПРФ получит 3-й мандат. Но 9?й мандат «Единой России» оказывается 21-м, то есть последним из распределяемых, поэтому КПРФ 3-й мандат не получает.

Здесь следует ввести понятие «правило квоты». Согласно этому правилу, каждая партия должна получить число мест, равное ее «идеальному частному», округленному либо до ближайшего большего, либо до ближайшего меньшего целого[447]. Легко понять, что все методы квот, использующие квоту Хэйра, это правило не нарушают, поскольку оно лежит в основе этих методов. А вот методы делителей правило квоты способны нарушить – это доказано математически[448].

Как видно из приведенного алтайского примера, метод д’Ондта в данном случае нарушает правило квоты, давая «Единой России» 9 мандатов, в то время как ее «идеальное частное» равно 7,701, и в соответствии с правилом квоты партия должна получить либо 7, либо 8 мандатов. Расхождение между методом д’Ондта и методом, основанным на квоте Хэйра и правиле наибольшего среднего, проявляется как раз тогда, когда метод д’Ондта нарушает правило квоты.

Отметим, что правило наибольшей средней может применяться в сочетании не только с квотой Хэйра, но и с другими квотами, которые обсуждались в подразделе 4.1.2. Более того, изначально автор данного метода, Э. Гогенбах-Бишоф, предусматривал использование квоты Друпа (или квоты Гогенбах- Бишофа, которая, как отмечалось выше, практически не отличается от квоты Друпа).

Расчеты для брюссельского случая дают одинаковые результаты при использовании как квоты Хэйра, так и квоты Друпа. А вот алтайский случай показывает нам различия: результаты распределения мандатов по методу, основанному на квоте Друпа и правиле наибольшей средней (см. таблицу 4.8), отличаются от результатов распределения по методу, основанному на квоте Хэйра и правиле наибольшей средней, и совпадают с результатами распределения по методу д’Ондта.

Таблица 4.8. Распределение мандатов по итогам голосования на выборах Государственного Собрания Республики Алтай 2006 года с использованием квоты Друпа и правила наибольшей средней

4.1.5. Другие истинные методы делителей

Как отмечалось в подразделе 4.1.3, истинные методы делителей различаются между собой правилами округления. Все остальные различия – производные от этого главного.

Вернемся теперь к американской истории. После того как в 1832 году был выявлен недостаток метода Джефферсона, который заключался в возможности нарушения правила квоты, Конгрессу были предложены два альтернативных метода делителей – один предложил бывший президент Дж. К. Адамс, другой – конгрессмен Д. Уэбстер. Предпочтение было отдано методу Уэбстера (в Европе этот метод позднее получил имя А. Сент-Лагю). Метод Уэбстера был использован в 1842 году, затем от него отказались, но в 1902 году к нему вернулись. Однако вскоре статистик Дж. Хилл и математик Э. Хантингтон предложили еще один метод (его называют либо методом Хантингтона – Хилла, либо просто методом Хилла). И с 1932 года места между штатами США распределяются по этому методу[449].

Известен также метод Дина, примеры применения которого на практике нам неизвестны[450]. Позднее появился метод, получивший название датского: он используется в Дании для распределения дополнительных мандатов между округами внутри региона[451].

Как отмечалось в предыдущем подразделе, метод Джефферсона (д’Ондта) подразумевает округление частных от деления результата партии на распределитель до ближайшего меньшего целого. В противоположность ему метод Адамса предполагает округление до ближайшего большего целого. Метод Уэбстера (Сент-Лагю) предусматривает округление по стандартному правилу: числа с дробной частью менее 0,5 округляются до ближайшего меньшего целого, а с дробной частью 0,5 и более – до ближайшего большего целого. Иными словами, здесь рубежом является среднее арифметическое между ближайшими меньшим и большим целыми.

Еще два метода в качестве такого рубежа используют другие средние: метод Хантингтона – Хилла – среднее геометрическое, метод Дина – среднее гармоническое. Датский метод использует в качестве рубежа одну треть: числа с дробной частью менее ? округляются до ближайшего меньшего целого, а с дробной частью ? и более – до ближайшего большего целого.

Для реализации всех этих методов в принципе возможны те же четыре алгоритма, которые описаны в подразделе 4.1.3 для метода Джефферсона (д’Ондта). Однако в некоторых случаях возникают технические сложности.

Наиболее проста реализация всех алгоритмов для методов Уэбстера (Сент-Лагю) и датского. Для первого получается ряд делителей 0,5; 1,5; 2,5; 3,5 и т. д. (первый делитель – среднее арифметическое между 0 и 1, второй – среднее арифметическое между 1 и 2 и т. д.). Обратим, однако, внимание на замечательный факт: если мы все делители умножим на один и тот же коэффициент, ранжировка полученных частных от этого не изменится. А нас при реализации третьего алгоритма интересует исключительно ранжировка. Поэтому для метода Сент-Лагю принято использовать третий алгоритм с удвоенным рядом делителей: 1, 3, 5, 7 и т. д.

Подобным же образом преобразуется третий алгоритм для датского метода. Исходный ряд делителей – ?, 1?, 2?, 3? и т. д. Умножая все делители на

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату