Гроссу хочется верить, что, если бы Эйнштейн был жив, он оценил бы теорию суперструн. Ему понравилось бы, что красота и простота теории суперструн в конечном итоге исходят из геометрического принципа, точная природа которого до сих пор неизвестна. Гросс утверждает: «Эйнштейн был бы доволен по меньшей мере целью, если не ее реализацией… Ему понравилось бы, что в основе лежит геометрический принцип, которого, к сожалению, мы не понимаем»[78].
Виттен даже рискует заявлять, что «все по-настоящему великие идеи в физике» — «побочные продукты» теории суперструн. Он имеет в виду, что в теорию суперструн укладываются все крупные достижения теоретической физики. И даже утверждает, что открытие Эйнштейном общей теории относительности раньше теории суперструн — «просто случайное событие в развитии планеты Земля». По мнению Виттена, где-то в космосе «другие цивилизации Вселенной» вполне могли открыть теорию суперструн первой, а из нее вывести общую теорию относительности[79].
Компактификация и красота
На теорию струн в физике возлагают столько надежд по той причине, что она дает простые объяснения истоков симметрии, присутствующей и в физике частиц, и в общей теории относительности.
В главе 6 мы видели, что супергравитация неперенормируема и слишком мала, чтобы вместить симметрию Стандартной модели. Таким образом, она не самосогласованна и не дает реалистичного описания известных частиц. И тем и другим свойством обладает теория струн. Как мы вскоре убедимся, она решает проблему бесконечных величин, обнаруженную в квантовой теории гравитации, и дает конечную теорию квантовой гравитации. Уже за одно это теорию струн следует считать серьезной претенденткой на звание теории Вселенной. Но у нее есть и дополнительное преимущество. Если компактифицировать некоторые измерения теории струн, выяснится, что она соотносима с симметрией Стандартной модели и даже теориями Великого объединения.
Гетеротическая струна представляет собой замкнутую струну, для которой характерны два типа вибраций — по часовой и против часовой стрелки, — которые рассматриваются отдельно. Колебания по часовой стрелке существуют в 10-мерном пространстве, колебания против часовой стрелки — в 26-мерном пространстве, в котором 16 измерений компактифицированы. (Как мы помним, в исходной пятимерной теории Калуцы пятое измерение компактифицировали, свернув его в круг.) Своим названием гетеротическая струна обязана тому факту, что колебания по часовой стрелке и против нее существуют в двух разных измерениях, но в сочетании дают единую теорию суперструн. Вот почему ее название происходит от греческого слова гетерозис, означающего «гибридная сила».
Гораздо больший интерес представляет 16-мерное компактифицированное пространство. Как мы помним, в теории Калуцы-Клейна с компактифицированным N-мерным пространством ассоциируются симметрии, почти как в случае с пляжным мячом. Значит, все колебания (или поля), определенные для N-мерного пространства, автоматически наследуют эти симметрии. Если это симметрия SUQV), тогда все вибрации в пространстве должны подчиняться симметрии SU (N) (так же, как глина наследует симметрии литьевой формы). Таким образом, теория Калуцы-Клейна может вмещать симметрии Стандартной модели. Вместе с тем можно установить, что супергравитация «слишком мала», чтобы содержать все частицы симметрий, относящихся к Стандартной модели. Этого достаточно, чтобы развенчать теорию супергравитации как реалистичную теорию материи и пространства-времени.
Но когда «принстонский струнный квартет» проанализировал симметрии 16-мерного пространства, то обнаружил, что они представляют собой чудовищно огромную симметрию, названную Е (8) x Е (8) и значительно превосходящую все предлагавшиеся ранее симметрии теорий Великого объединения[80]. Такого преимущества никто не предвидел. Оно означало, что все колебания струны будут наследовать симметрию 16-мерного пространства, которого более чем достаточно, чтобы вместить симметрию Стандартной модели.
В этом и заключается записанное математически выражение центральной темы данной книги: законы физики в высших измерениях упрощаются. В данном случае 26-мерное пространство вибраций, направленных против часовой стрелки и совершаемых гетеротической струной, дает предостаточно возможностей для объяснения всех симметрий, содержащихся и в теории Эйнштейна, и в квантовой теории. Так впервые геометрия в чистом виде дала простое объяснение причин, по которым субатомный мир неизбежно должен демонстрировать определенные симметрии, возникающие при скручивании пространства высших измерений: симметрии субатомного мира — не что иное, как остатки симметрии пространства высших измерений.
Значит, красоту и симметрию, которые мы обнаруживаем в природе, можно проследить в обратном направлении до пространства высших измерений. Например, снежинки представляют собой красивые шестиугольники, среди которых нет двух совершенно одинаковых. Эти снежинки и кристаллы унаследовали свою структуру от способа геометрического расположения их молекул. Их расположение обусловлено главным образом электронными оболочками молекул, что, в свою очередь, приводит нас к вращательной симметрии квантовой теории, которую дает О (3). Все симметрии низкоэнергетической Вселенной, которые мы видим в химических элементах, — результат симметрий, описанных Стандартной моделью, которая, в свою очередь, может быть выведена путем компактификации гетеротической струны.
В заключение скажем, что примеры симметрии, которые мы видим вокруг — от радуги до цветочных бутонов и кристаллов, — можно в конечном счете рассматривать как проявления фрагментов изначальной десятимерной теории[81]. Риман и Эйнштейн надеялись объяснить геометрическими средствами, почему взаимодействие может определять движение и природу материи. Однако они упустили из виду ключевой ингредиент взаимоотношений между «деревом» и «мрамором». Это недостающее звено — почти наверняка теория суперструн. На примере десятимерной теории струн мы видим, что геометрия струны может в конечном итоге обуславливать и взаимодействия, и структуру материи.
Фрагмент физики XXI в.
Учитывая колоссальную мощность симметрий теории суперструн неудивительно, что эта теория кардинально отличается от любой другой, относящейся к физике. Она была открыта, в сущности, случайно. Многие физики отмечали: если бы не эта счастливая случайность, то теорию суперструн открыли бы лишь в XXI в. Дело в том, что она представляет собой решительное отступление от всех идей, предложенных в XX в. Теория суперструн — не экстраполяция и не продолжение популярных тенденций и теорий XX в., она занимает особое положение.
В отличие от нее, общая теория относительности эволюционировала «традиционно» и последовательно. Сначала Эйнштейн сформулировал принцип эквивалентности сил гравитации и инерции. Затем он математически выразил этот принцип в гравитационной теории поля, основой которой стали поля Фарадея и метрический тензор Римана. Затем появились «классические решения», такие как черные дыры и Большой взрыв. И наконец, последний этап — современная попытка сформулировать квантовую теорию гравитации. Таким образом, общая теория относительности развивалась последовательно, проходя в своем развитии этапы от физического принципа до квантовой теории:
Геометрия —> Теория поля —> Классическая теория —> Квантовая теория.
В отличие от нее, теория суперструн развивалась в обратном направлении с тех пор, как была случайно открыта в 1968 г. Вот почему теория суперструн кажется большинству физиков такой странной и непривычной. Мы до сих пор заняты поисками физического принципа, лежащего в основе этой теории, — аналога принципа эквивалентности Эйнштейна.
78
Гросс, интервью. См.: «Суперструны», под ред. Дэвиса и Брауна, с. 150.
79
Джон Хорган «Суперструнный искуситель», с. 42.
80
Рассмотрим компактификацию для полностью гетеротической струны, которой свойственно два типа колебаний: одно — в полном 26-мерном пространстве-времени, второе — в обычном 10-мерном пространстве-времени. Поскольку 26–10 = 16, можно предположить, что 16 из 26 измерений свернуты, т. е. «компактифицированы» с образованием некой системы, в итоге у нас остается десятимерная теория. Всякий, кто пройдется по любому из этих 16 направлений, в конечном итоге вернется в ту же точку.
Питер Фройнд предположил, что группа симметрии для этого 16-мерного компактицифированного пространства — группа Е (8) x Е (8). Быстрая проверка подтверждает, что эта симметрия значительно обширнее и что к ней относится группа симметрии Стандартной модели SU (3) SU (2) x U (1).
Словом, ключевое выражение 26–10 = 16. Оно означает, что, если мы компактифицируем 16 из первоначальных 26 измерений гетеротической струны, у нас появится 16-мерное компактное пространство с остаточной симметрией Е (8) x Е (8). Но согласно теории Калуцы-Клейна, частица, вынужденная существовать в компактифицированном пространстве, неизбежно наследует симметрию этого пространства. Значит, колебания струны должны преобразовываться согласно группе симметрии Е (8) x Е (8).
В итоге можно сделать вывод, что теория группы показывает: данная группа гораздо обширнее, чем группа симметрии, появляющаяся в Стандартной модели, следовательно, может включать Стандартную модель как малую подсистему десятимерной теории.
81
Несмотря на то что теория супергравитации определена в 11 измерениях, масштабы этой теории все равно недостаточны, чтобы вместить все взаимодействия частиц. Крупнейшая группа симметрии для супергравитации — 0(8), а она слишком мала, чтобы вместить симметрии Стандартной модели.
На первый взгляд кажется, что 11-мерная супергравитация обладает большим числом измерений, следовательно, большей симметрией, чем 10-мерная суперструна. Однако это лишь видимость, потому что гетеротическая струна начинается с компактификации 26-мерного пространства до уровня 10-мерного пространства, в итоге у нас остается 16 компактифицированных измерений, которые дают группу Е (8) x Е (8). Этого с избытком хватает для размещения Стандартной модели.