представлениях о так называемом Большом взрыве и дополнительном периоде экспоненциального расширения Вселенной, известного как космологическая инфляция.
Эта теория согласуется с широким спектром самых разных наблюдательных данных, включая данные о микроволновом космическом излучении — фоновом излучении, оставшемся со времен Большого взрыва. Первоначально Вселенная представляла собой горячий плотный огненный шар. За 13,75 млрд лет своего существования она успела сильно разредиться и остыть, и температура реликтового излучения на сегодня составляет всего лишь 2,7 К — всего на пару градусов выше абсолютного нуля. Кроме того, в пользу теории Большого взрыва и расширения Вселенной свидетельствуют подробные подсчеты количества ядер, которые были «изготовлены» на ранних стадиях эволюции Вселенной, и данные о скорости ее расширения.
Фундаментальные уравнения, которыми мы пользуемся при описании эволюции Вселенной, —это уравнения, полученные Эйнштейном в начале XX в. Они говорят о том, как получить характеристики гравитационного поля на основании данных о распределении вещества и энергии. Эти уравнения можно использовать для описания гравитационного поля между Землей и Солнцем, но с тем же успехом они справедливы и по отношению к Вселенной в целом. В любом случае, чтобы вычислить что?то на основании этих уравнений, необходимо знать все о веществе и энергии вокруг нас.
Тот факт, что измеренные параметры Вселенной требуют присутствия новой неизвестной формы энергии, стал для ученых настоящим шоком. Эта неизвестная энергия не переносится ни частицами, ни какой бы то ни было другой формой вещества, и не собирается в сгустки, подобно традиционному веществу. Она также не становится более разреженной по мере расширения Вселенной, а сохраняет постоянную плотность. Благодаря этой таинственной энергии, равномерно пронизывающей всю Вселенную даже там, где в ней совсем нет вещества, расширение Вселенной постепенно ускоряется.
Эйнштейн первоначально предложил учесть существование такой формы энергии в виде константы, которую он назвал
Мы, ученые, хотим больше узнать о загадочной темной энергии и лучше понять ее. В настоящее время разрабатываются эксперименты, цель которых — определить, что она собой представляет — просто фоновую энергию, которую предлагал ввести Эйнштейн, или новую форму энергии, изменяющейся во времени. А может, это что?то третье и совершенно неожиданное — что?то такое, чего мы пока даже представить не в состоянии.
ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ
Это всего лишь пример — хотя и весьма важный — тех задач, которые мы сегодня решаем. Кроме уже описанных, в настоящее время готовится немало и других космологических экспериментов. Детекторы гравитационных волн попытаются уловить гравитационное излучение, возникающее при слиянии черных дыр и при других интереснейших явлениях, в которых принимают участие громадные количества массы и энергии. Космические эксперименты по регистрации микроволнового излучения позволят нам больше узнать об инфляции. Детекторы космических лучей расскажут нам новые подробности о составе Вселенной. А детекторы инфракрасного излучения, возможно, обнаружат в небе новые необычные объекты.
В некоторых случаях мы сможем понять данные, полученные в результате экспериментов, достаточно хорошо, чтобы сделать на их основе новые выводы о фундаментальной природе вещества и законов природы. В других случаях нам придется потратить немало времени на то, чтобы разобраться в