Обратите внимание: в нашей аналогии точки не обязательно увеличиваются сами по себе — увеличиваются расстояния между ними. Именно так происходит и в реальной расширяющейся Вселенной. Атомы, к примеру, прочно скреплены электромагнитными силами и, естественно, не становятся больше. Не увеличиваются в размерах и такие относительно плотные и прочно связанные структуры, как галактики. Сила, заставляющая Вселенную расширяться, действует и на них тоже, но поскольку в них значительны и другие силы, то сами галактики не растут с общим расширением Вселенной. Действующие в них силы притяжения настолько существенны, что галактики сохраняют свои размеры, тогда как расстояния между ними непрерывно растут.

Разумеется, аналогия с воздушным шариком далеко не идеальна. У Вселенной три пространственных измерения, а не два, как у оболочки шарика. Более того, Вселенная велика и, вероятно, бесконечна по размеру, а не мала и искривлена, как поверхность шарика. Мало того, шарик существует в нашей Вселенной и расширяется в ней же, в отличие от Вселенной, которая существует и расширяется сама по себе. Но, несмотря на все ограничения, сравнение с шариком помогает представить, что такое расширение пространства. Каждая точка на ней удаляется одновременно от всех остальных точек.

Аналогия с шариком — на этот раз речь идет о его внутреннем содержимом — помогает понять и то, как Вселенная остывала, превращаясь из горячего плотного шара в нынешнее свое состояние. Представьте очень горячий шар, который вдруг начинает расширяться до очень больших размеров. Если сначала он, возможно, слишком горяч и до него невозможно дотронуться, то после расширения воздух в нем окажется намного прохладнее. Теория Большого взрыва утверждает, что первоначальная горячая и плотная Вселенная расширялась, одновременно остывая.

Надо сказать, что еще Эйнштейн вывел гипотезу о расширении Вселенной из уравнений общей теории относительности. Однако в то время никто еще не измерил и не обнаружил это расширение экспериментально, и Эйнштейн не поверил собственным выводам. Пытаясь примирить свою теорию со стационарной Вселенной, он ввел новый тип энергии, включив для этого в свои уравнения лямбда–член. После наблюдений Хаббла Эйнштейн отказался от этого искусственного средства и назвал его «величайшим заблуждением». Однако оказалось, что и гипотеза о дополнительной энергии не была полностью ошибочной. Как мы скоро узнаем, недавние измерения показывают, что так называемая космологическая константа, введенная Эйнштейном, действительно необходима для объяснения наблюдаемых явлений. В то же время ее измеренная величина, отвечающая за недавно обнаруженное ускорение расширения, оказалась примерно на порядок больше, чем та, что предлагал сам Эйнштейн, чтобы просто стабилизировать Вселенную.

Расширение Вселенной — прекрасный пример слияния походов «сверху вниз» и «снизу вверх» в физике. Теория гравитации Эйнштейна подразумевала, что Вселенная должна расширяться, но лишь с экспериментальным открытием этого расширения физики почувствовали себя на верном пути.

Сегодня мы называем число, определяющее скорость расширения Вселенной в настоящее время, постоянной Хаббла. Это постоянная величина в том смысле, что местное расширение в любой точке пространства идет с одинаковой скоростью. Однако параметр Хаббла не постоянен во времени. В прежние времена, когда Вселенная была более горячей и плотной, а гравитационные эффекты в ней проявлялись сильнее, она расширялась намного быстрее, чем сегодня.

Точно измерить постоянную Хаббла очень сложно, потому что мы сталкиваемся здесь с той самой проблемой, которую поднимали и раньше, — проблемой различения прошлого и настоящего. Нам нужно знать, как далеко от нас находятся галактики, испытывающие красное смещение, поскольку красное смещение определяется скоростью, а она связана с расстоянием через коэффициент в виде постоянной Хаббла. Именно связанные с этим неточные измерения были причиной двукратного занижения возраста Вселенной, о котором я говорила в начале этой главы. Неопределенность при оценке параметра Хаббла была примерно такой же, как и неопределенность возраста Вселенной.

Это противоречие к настоящему моменту практически разрешено. Параметр Хаббла измерен Венди Фридман из Гарвард–Смитсоновского центра астрофизики, так что скорость удаления галактики, отстоящей от нас на миллион световых лет, составляет примерно 22 км/сек. На основании этой величины мы теперь

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату