положении, нежели его слепые сородичи: если на светочувствительные клетки падала тень хищника, животное было предупреждено и могло попытаться скрыться, в то время как остальные представители того же вида оказывались сожранными. В следующем, улучшенном поколении количество светочувствительных особей возросло, они снова выжили, а их потомки, в свою очередь, тоже имели больше шансов на выживание. И так далее. Однако новые мутации возникают постоянно, и вот однажды одно из этих светочувствительных животных могло родиться с небольшим углублением на коже, в котором и сосредоточились чувствительные клетки. Это давало существу новые преимущества. Оно не только чувствовало возможную близость хищника, теперь оно еще знало и примерное направление, в котором перемещается враг. Вместо простых световых рецепторов, работающих по принципу «вкл./выкл.», когда на них попадает тень хищника, существо обзавелось новым типом рецепторов, сообщающих, с какой стороны приближается хищник, и дающих существу возможность скрыться в противоположном направлении. Существа со световыми рецепторами и углублением имели преимущество при выживании, соответственно любая мутация, которая увеличивала углубление, усиливала зоркость этого рудиментарного глаза и предоставляла новые преимущества. Реальные примеры такого типа глаз мы можем наблюдать на окаменелостях, а также у некоторых видов ныне живущих организмов, например у плоских червей и моллюсков.
Дальнейшее совершенствование могло выражаться в том, что отверстие над центром углубления стало меньше, создавая эффект камеры-обскуры, а это уже начало пути от простого различения света и тени к восприятию изображения.
Многие люди, услышав подобный рассказ о первых этапах эволюции глаза, а также о дальнейшем его развитии, появлении хрусталика и сетчатки, способны допустить вероятность возникновения такого механизма, но не могут понять, как несколько разных компонентов могут последовательно эволюционировать таким образом, чтобы достичь соотношения, оптимального для совместной работы. «Кому нужен наполовину сформированный глаз?» — недоумевают они. Но как писал биолог и популяризатор науки Колин Тадж (р. 1943):
«Полуглаз лучше, чем полное отсутствие глаза. Сетчатка чрезвычайно полезна даже при отсутствии хрусталика, позволяющего фокусировать зрение. Она и в зачаточном состоянии позволяет различать свет и темноту и фиксирует движение. Даже один-единственный фоторецептор и тот приносит пользу, не говоря уж обо всей сетчатке. Хрусталик изначально мог возникнуть как прозрачный защитный слой и лишь затем обрел способность к фокусировке: для этого ему потребовалась только выпуклость. Таким образом, как отмечал еще сам Дарвин, мы видим тысячи примеров существ с более простыми органами зрения, чем у человека, начать хотя бы с простейших, обладающих всего одной светочувствительной клеткой».
Другой популярный довод не верящих в теорию эволюции — это огромное количество времени, которое потребовалось бы, по их мнению, на столь длинную цепь последовательных мутаций. Но уж чего- чего у эволюции в достаточном количестве, так это времени.
Двое шведских ученых, Дан Нильсон и Сюзанна Пелер, разработали потрясающую компьютерную программу, позволяющую воспроизводить эффект случайных мутаций в слое светочувствительных рецепторов, сгенерированном при помощи компьютера. В каждом новом поколении сохранялись только те экземпляры, у которых было хотя бы минимальное преимущество по части восприятия и анализа поступающих световых лучей. Вызывая у этих потомков случайные мутации и отбирая для продолжения рода только особи, обладающие хоть малейшим преимуществом, ученые смогли смоделировать процессы, происходившие с глазами на протяжении многих поколений, и подсчитать, сколько поколений потребовалось бы, чтобы глаз обрел сферическую форму и у него появились хрусталик и сетчатка.
Результаты получились поразительные. Сделав некоторое количество осторожных допущений, основанных на данных биологии и генетики, ученые пришли к выводу, что эволюция глаза от гладкого участка кожи до вполне функционирующего органа заняла бы около 400 000 поколений. Учитывая, что средняя продолжительности жизни мелких существ, у которых как раз и формировалось зрение, не превышает года, можно предположить, что на развитие полностью функционирующего глаза ушло менее полумиллиона лет. Сложные по строению организмы существуют на Земле вот уже около 500 миллионов лет, так что в каждом биологическом семействе глаза уже могли пройти весь эволюционный путь не по одному разу. И лишнее подтверждение тому — следующий факт: биологи независимо друг от друга уже более сорока раз доказали, что глаза животных претерпевали эволюционные изменения.
В отличие от противников дарвиновской теории, удивляющихся, как это сложные органы и организмы неким загадочным образом развиваются в еще более сложные, ученые-биологи сильно удивились бы, если бы уровень сложности со временем не нарастал. Особенно учитывая количество постоянно возникающих мутаций и то, как давно на Земле появилась жизнь.
Наши с вами познания о динозаврах строятся отчасти на творческой реконструкции древних форм жизни в художественных и документальных фильмах и в меньшей степени (зато это более достоверные сведения!) на музейных экспозициях. Очень часто в музеях наряду с выставленными экспонатами нас ожидают рассказы о жизни и повадках древних ящеров; они дают нам весьма достоверный портрет существ, от которых ныне остались только отдельные кости или целые скелеты. Как же палеонтологам удается узнать подробности из жизни динозавров, имея под рукой только кучку костей?
Одна из загадок динозавров — это их размер. Некоторые виды динозавров, известные под общим названием «зауроподы», были самыми крупными существами из всех, когда-либо населявших нашу планету. Их масса достигала 50 и даже 80 тонн, что в десять раз больше, чем у самых крупных млекопитающих и других динозавров. Питались зауроподы исключительно растениями и при этом царили на Земле 100 миллионов лет — намного дольше, чем любой другой отряд травоядных.
Каким образом эти животные длиной до 40 метров и до 17 метров ростом умудрились обрести столь гигантские размеры, особенно если учесть, что все остальные виды вырастали максимум до одной десятой от этих величин? И главное, как современным ученым ответить на этот вопрос, если все, чем они располагают, — кучка костей или в лучшем случае целый скелет зауропода?
Недавно двое ученых из Германии и Швейцарии представили вниманию научного сообщества цепочку умозаключений, начинающуюся с нескольких фактов о пищевых привычках зауроподов и заканчивающуюся убедительным объяснением динозавровых габаритов.
Исходной точкой послужило следующее: изучив диету зауроподов и проанализировав строение их головы и шеи, ученые заключили, что эти динозавры не пережевывали пищу и не перемалывали ее в так называемой желудочной мельнице, используемой потомками динозавров — птицами: проглоченная птицами пища измельчается при помощи камешков, заменяющих собой жернова. Но ведь огромное количество растительной пищи, необходимое для снабжения динозавра достаточным количеством энергии, требовало длительного переваривания, вот тут-то и срабатывали размеры: ведь чем больше тело, тем больше и кишечник.
Поскольку динозавры не пережевывали пищу, им не нужна была крупная голова — надобности в огромных челюстях и мощных челюстных мышцах просто не возникало. У животных с крупной и тяжелой головой не могло быть длинной и тонкой шеи, но перед мелкоголовыми зауроподами такой проблемы не стояло. Чрезвычайно длинная шея позволяла им доставать пищу с большой высоты, куда не добирались другие животные.
Еще одна подсказка относительно того, как зауроподы управлялись с такими огромными телами, была получена благодаря ряду открытий в области дыхательной системы динозавров. В отличие от животных, у которых вдыхаемый и выдыхаемый воздух содержится в специальных емкостях — легких, — дыхательная система динозавров была устроена иначе и походила на птичью. Это называется «проточная дыхательная система»: она позволяет кислороду, вдыхаемому с воздухом, входить в контакт с различными частями тела и поступать в кровь в разных местах, в том числе и в длинной шее. Более того, воздух мог использоваться сразу по поступлении его в организм, еще до того, как он пройдет весь путь по шее и достигнет легких. Многие кости, включая позвонки размером в полтора метра, при дыхании наполнялись воздухом, соответственно существо с таким типом дыхания неизбежно весило меньше, чем весило бы существо аналогичных габаритов, но дышащее как млекопитающие.