служить шкала расстояний: вплотную, очень близко, близко, ни далеко ни близко, далеко, очень далеко, в бесконечности; или шкала размеров: крошечный, очень маленький, маленький, средний, большой, очень большой, огромный. Особенностью лингвистических шкал является то, что их элементы могут быть отражены в некоторых интервалах значений определенного параметра, измеряемого в натуральных единицах (метрах, часах, квадратных километрах и т.п.). При хорошо устроенной шкале эти интервалы должны покрывать ее плотно без наложений друг на друга. Добиться этого можно путем введения отсечек на графиках функций принадлежности, фиксирующих некоторое их пороговое значение.
На рис. 28,
Перейдем теперь к нечетким рассуждениям. Напомним сначала, что один шаг достоверного вывода можно описать в виде схемы следующего вида.
Здесь над чертой стоят те утверждения, истинность которых уже доказана, а ниже черты – утверждения, истинность которых логически следует из верхних утверждений и тех правил вывода, которые используются в данной логической системе. Для большей наглядности рассмотрим один частный, но весьма распространенный случай вывода, с которым мы уже сталкивались, – по правилу модус поненс. Напомним его схему:
Рассмотрим теперь схему вида
Здесь 1 – нечеткий квантификатор, показывающий, что истинность
Знак вопроса стоит тут на том месте, где должен находиться некоторый нечеткий квантификатор. Интуиция подсказывает нам, что им должен быть квантификатор «часто». Вывод «часто я не выхожу на улицу» выглядит вполне в духе человеческих умозаключений.
Рассмотрим еще одну схему:
Здесь квантификатор 1 стоит в другой позиции. Примером такого рассуждения может служить следующая схема:
Какой квантификатор надо здесь подставить вместо знака вопроса? Однозначный ответ на этот вопрос вряд ли возможен. В схеме нет информации о частоте события
Рассмотрим, наконец, схему
Конкретный случай ее реализации:
Здесь определение 2 более обосновано. По- видимому, большинство читателей не будут возражать, если вместо знака вопроса будет стоять квантификатор «нередко», хотя могут быть и другие мнения.
При создании логик, моделирующих нечеткие рассуждения, делалось немало попыток поиска формальных процедур, позволяющих «вычислять» вид 2. О некоторых из них говорится в комментариях к данному разделу. В следующем разделе мы опишем один из возможных способов такого «вычисления», а в заключительном разделе главы познакомимся еще с несколькими предложениями такого рода. Но прежде чем делать это, остановимся еще на одном моменте, связанном с использованием нечетких квантификаторов при рассуждениях.
В высказываниях «В Ленинграде часто идет дождь» или «Мой ребенок часто болеет» использован один и тот же нечеткий квантификатор «часто». Но каждому ясно, что за ним скрывается неодинаковая фактическая частота. Дожди в Ленинграде, наверное, идут куда чаще, чем болеет ребенок. Один и тот же квантификатор соотносится в этих высказываниях с различными
Известен, например,