{
SAFEARRAY *pArray = 0;
HRESULT hr = g_pObjRef->GetPrimes(nMin, nMax, &pArray);
assert(SUCCEEDED(hr) && SafeArrayGetDim(pArray) == 1);
long *prgn = 0;
hr = SafeArrayAccessData(pArray, (void**)&prgn);
long iUBound, iLBound, result = 0;
SafeArrayGetUBound(pArray, 1, &iUBound);
SafeArrayGetLBound(pArray, 1, &iLBound);
for (long n = iLBound; n <= iUBound: n++)
result += prgn[n];
SafeArrayUnaccessData(pArray);
SafeArrayDestroy(pArray);
return n;
}
Отметим, что вызывающая программа ответственна за освобождение ресурсов, выделенных для SAFEARRAY-массива, возвращенного как [out]-параметр. Вызов функции SafeArrayDestroy корректно освобождает всю память и все ресурсы, удерживаемые структурой SAFEARRAY.
Управление потоками данных
Отметим, что в предыдущих примерах использования массивов, в том числе типа
HRESULT Sum([in] long cElems, [in, size_is(cElems)] double *prgd, [out, retval] double *pResult);
Если бы вызывающая программа должна была запустить этот метод следующим образом:
double rgd[1024 * 1024 * 16];
HRESULT hr = p->Sum(sizeof(rgd)/sizeof(*rgd), rgd);
то размер результирующего ответного сообщения ORPC-запроса был бы не меньше 128 Мбайт. Хотя лежащий в основе RPC-протокол вполне в состоянии разбивать большие сообщения на несколько сетевых пакетов, при использовании больших массивов все же возникают некоторые проблемы. Одна очевидная проблема состоит в том, что вызывающая программа должна иметь свыше 128 Мбайт доступной памяти сверх той, которая занята существующим массивом. Дублирующий буфер необходим интерфейсному заместителю для создания ответного ORPC-сообщения, в которое в конечном счете будет скопирован этот массив. Подобная проблема заключается в том, что процесс объекта также должен иметь больше 128 Мбайт доступной памяти для реконструирования полученных RPC-пакетов в единое сообщение ORPC. Если бы массив использовал атрибут
Более сложная проблема с приведенным выше определением метода связана со временем ожидания (
Для решения проблем, связанных с передачей больших массивов в качестве параметров метода, в СОМ имеется стандартная идиома разработки интерфейсов, позволяющая получателю данных явно осуществлять управление потоками элементов массива. Эта идиома основана на передаче вместо фактических массивов специального интерфейсного указателя СОМ. Этот специальный интерфейсный указатель, называемый
interface IEnumDouble : Unknown {
// pull a chunk of elements from the sender
// извлекаем порцию данных из отправителя
HRESULT Next([in] ULONG cElems, [out, size_is(cElems), length_is(*pcFetched)] double *prgElems, [out] ULONG *pcFetched);
// advance cursor past cElems elements
// переставляем курсор после элементов cElems
HRESULT Skip([in] cElems);
// reset cursor to first element
// возвращаем курсор на первый элемент
HRESULT Reset(void);
// duplicate enumerator's current cursor
// копируем текущий курсор нумератора
HRESULT Clone([out] IEnumDouble **pped);
}
Важно отметить, что интерфейс
HRESULT Sum([in] long cElems, [in, size_is(cElems)] double *prgd, [out, retval] double *pResult);
преобразуется следующим образом:
HRESULT Sum([in] IEnumDouble *ped, [out, retval] double *pResult);
Отметим, что подсчет элементов больше не является обязательным, так как получатель данных обнаружит конец массива, когда метод
При наличии приведенного выше определения интерфейса корректной была бы следующая реализация метода:
STDMETHODIMP MyClass::Sum(IEnumDouble *ped, double *psum) {
assert(ped && psum);
*psum = 0; HRESULT hr; do {
// declare a buffer to receive some elements
// объявляем буфер для получения нескольких элементов
enum {
CHUNKSIZE = 2048 };
double rgd[CHUNKSIZE];