ньютоновском описании) или волновым функциям (в шредингеровском). Новое представление об ансамблях не влечет за собой потери информации, напротив, оно позволяет более полно охватить свойства диссипативных хаотических систем.

Устойчивые и обратимые во времени классические системы, как мы теперь понимаем, соответствуют предельным, исключительным случаям (в квантовом мире положение сложнее, так как нарушение симметрии во времени есть необходимое условие для наблюдения микрообъектов – для перехода от амплитуд вероятности к самим вероятностям). Типичны именно неустойчивые хаотические системы, описываемые неприводимыми вероятностными законами, – они соответствуют подавляющему большинству случаев, представляющих физический интерес.

Причина успеха этого подхода кроется в обращении к новым математическим средствам. Хорошо известно, что задача, неразрешимая с помощью одного алгоритма, может стать разрешимой, если использовать другой. Например, вопрос о существовании корней алгебраического уравнения неразрешим в области вещественных чисел (оно может не иметь ни одного вещественного корня), но стоит перейти в область комплексных чисел, как ответ становится очень простым: каждое уравнение n-степени имеет n корней. Поиск соотношения между проблемами и средствами, необходимыми для их решения, – процесс открытый, способный служить великолепной иллюстрацией творческого созидания, свободного и в то же время ограниченного решаемой задачей.

Как ни удивительно, но теперь ученые в состоянии решить и некоторые, не поддававшиеся прежде конкретные проблемы. В классической динамике законы хаоса ассоциируются с интегрированием «неинтегрируемых» систем Пуанкаре, а предложенные методы дают более мощные алгоритмы. Также и в квантовой механике они позволяют устранить трудности, стоящие на пути решения задачи на собственные значения (реализации программы Гейзенберга).

Даже такая простая проблема, как рассеяние частиц в потенциальном поле, приводит к неинтегрируемым системам Пуанкаре (интегрируемые системы Пуанкаре – это достаточно простые системы, в которых взаимодействие элементов можно математически исключить; в уравнениях, описывающих их движение, прошлое и будущее неразличимы. Неинтегрируемые – более сложные системы, в которых взаимодействие элементов становится принципиально важным – в них появляется стрела времени).

Введение неприводимых вероятностных представлений потребовало рассмотрения так называемых «обобщенных пространств». Гильбертово пространство само уже есть обобщение конечномерных векторных пространств (его элементы – уже не векторы, а функции), но в нем мы можем использовать только достаточно «хорошие» функции. В обобщенных же пространствах можно оперировать также сингулярными, или обобщенными функциями (эти функции позволяют математически корректно описывать используемые в физике идеализированные представления. Например, равная единице плотность массы материальной точки, расположенной в начале координат или электрического заряда, выражается?-функцией Дирака). Все это аналогично переходу от плоской евклидовой геометрии к искривленной римановой.

Другой существенный элемент теории – хронологическое, или временное, упорядочение. Гармонический осциллятор (классический или квантовый) обратим во времени. Но в неинтегрируемой системе возникает естественное упорядочение, задаваемое направленным течением самого процесса. Простейший пример – различие, возникающее в электродинамике между запаздывающими и опережающими потенциалами. Если устойчивые системы связаны с детерминистским, симметричным временем, то неустойчивые хаотические – с вероятностным, нарушающим равноправие прошлого и будущего.

Ограниченность традиционного описания в терминах отдельных траекторий или волновых функций не должна удивлять. Когда мы толкуем об архитектуре, мы имеем в виду не кирпичи, а здание в целом. Нередко приходится слышать, что история в наши дни ускорила свой бег; и в этом случае сказанное относится не к изменению природы отдельных людей, а к изменению отношений между ними из-за небывалого развития средств связи. Даже рождение новых идей любым человеком обусловлено тем, что он погружен в разделяемый многими мир значений, проблем и отношений. Другими словами, это есть свойство всей системы в целом.

Ситуация, с которой мы сталкиваемся в физике, много проще. Однако и там нам надлежит отказаться от мнения, будто время есть параметр, описывающий движение отдельных элементов системы. Адекватное физическое описание хаотических процессов, которое включило бы в себя необратимость и вероятность, возможно только при их целостном рассмотрении на уровне ансамблей.

3.1. Объединяющая роль хаоса

Между фундаментальными законами физики и всеми остальными науками существовал разрыв. Мы глубоко убеждены в том, что предложенный подход дает более согласованное и единообразное описание природы, преобразующее взаимосвязи между науками. Теперь можно избежать взгляда, который, во имя сохранения основных уравнений, низводит время до иллюзии и сводит человеческий опыт к некоей субъективной реальности, лежащей вне природы. Хаос позволяет по-новому сформулировать то, что нам надлежит познать.

Устойчивые механические, а также конечные квантовые системы исторически послужили фундаментом для создания великих теоретических схем физики. Эти теории делали акцент на том, что сейчас представляется весьма частными случаями, и экстраполировали свои выводы далеко за пределы применимости каждого такого случая.

Мы сталкиваемся с двумя совершенно различными проявлениями хаоса – динамическим (на микроуровне) и диссипативным (на макроуровне). Первый находится на самом нижнем уровне описания природы, он включает в себя нарушение симметрии во времени и имеет выход в макроскопические явления, направляемые вторым началом термодинамики. Среди них – процессы приближения систем к равновесию, в которых проявляет себя диссипативный хаос.

Мы знаем, что вдали от положения равновесия возможны разные аттракторы. Одни из них соответствуют периодическим режимам, другие – хаотичным. Все эти диссипативные эффекты представляют собой макроскопические реализации хаотической динамики, описываемой нелинейными уравнениями. Только через исследование нелинейных систем мы можем постичь внутреннее единство в неисчерпаемом разнообразии природных процессов – от беспорядочных, например излучения нагретого тела, до высокоорганизованных, идущих в живых существах.

«Хаос» и «материя» – понятия, тесно взаимосвязанные, поскольку динамический хаос лежит в основе всех наук, занимающихся изучением той или иной активности вещества, начиная с физической химии. Кроме того, хаос и материя вступают во взаимодействие еще и на космологическом уровне, так как самый процесс обретения материей физического бытия, согласно современным представлениям, связан с хаосом и неустойчивостью.

Эйнштейновская космология стала венцом достижений классического подхода, но в «стандартной модели» материя уже изначально есть, она лишь эволюционирует в соответствии с фазами расширения Вселенной. Однако неустойчивость возникает, как только мы учитываем эффект рождения материи и пространства-времени в состоянии сингулярности Большого взрыва. Предложенная модель не утверждает, что космологическая стрела времени рождается «из ничего» – она проистекает из неустойчивости квантового вакуума. Ведь направление времени, различие между прошлым и будущим никогда не были столь существенными, как при планковских значениях физических величин, то есть в тот момент, когда рождалась наша Вселенная.

Можно ли пойти дальше? Если хаос – объединяющий элемент в необъятной области от классической механики до квантовой физики и космологии, то не может ли он послужить для построения Теории Всего Сущего (или сокращенно – ТВС)?

Здесь выскажем некоторые предостережения. Прежде всего, подчеркнем, что неустойчивость связана с вполне определенной формой динамики. Классический хаос качественно отличен от квантового

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату