не может существовать без действующей на тело силы. Таким образом, чтобы не нарушать второй закон, необходимо постулировать гравитационную силу в направлении центра Земли, которая действует на любую массу. Чтобы обозначить эту особую силу тяготения, используем букву
Если бы сила гравитации была постоянной величиной независимо от природы падающего тела, тогда более массивное тело ускорялось бы меньше (то есть падало бы медленнее), чем массивное. Это наиболее просто выражено в уравнении 2.
Но это не так. Итальянский ученый Галилей примерно за столетие до опубликования «Principia Mathematica» провел эксперименты, убедительно доказывающие, что все тела, какую бы массу они ни имели, ускоряются одинаково во время падения (если мы не берем в расчет сопротивление воздуха).
Ну а если тело А вдвое массивнее тела В, тогда потребуется вдвое большая сила, чтобы заставить его ускоряться до той же величины. Соответственно, если тело А в пять раз массивнее тела В, то для него нужна в пять раз большая сила, чем для тела В, и так далее.
Таким образом, если опыт Галилея правилен, тогда все тела вне зависимости от их массы будут ускоряться при падении одинаково, а гравитационная сила, производимая Землей, — прямо пропорциональна массе падающего тела. Или в виде формулы:
Но по третьему закону механики Ньютона, если Земля прикладывает силу, действующую на падающее тело в направлении вниз, то падающее тело прикладывает такую же силу по отношению к Земле.
Это означает, что когда падающее тело получает ускорение вниз, то Земля получает ускорение вверх. Однако Земля является более массивной, чем падающее тело, и ускоряется в значительно меньшей степени. (Я слышу ваши возражения: «Но вы только что сказали, что все тела любой массы ускоряются одинаково». Да, но в ответ на гравитационное воздействие Земли. Все тела любой массы также ускоряются одинаково по отношению к падающему телу — но только по отношению к нему. Одно «одинаково» не совпадает с другим «одинаково».)
Земля настолько массивней падающих тел, которые мы обычно используем, что ускорение Земли по отношению к ним заметить совершенно невозможно. Это несколько запутывает дело, и хорошо, что Ньютон просто отбросил это усложнение: это позволило ему понять, что притяжение — не только свойство Земли, но и свойство всех объектов во Вселенной.
По третьему закону, если Земля притягивает к себе падающие тела, падающие тела должны совершенно так же притягивать Землю. Если сила притяжения зависит от массы падающего тела, это должно также зависеть от массы Земли, поскольку мы не можем дать одной стороне преимущественного положения перед другой. Если мы обозначим массу Земли буквой
Гравитационная сила также зависит от расстояния между телами. Разумно предположить, что чем дальше два тела друг от друга, тем слабее их притяжение друг к другу. Можно доказать, что гравитационная сила пропорциональна расстоянию между падающим телом и Землей. Из принципа симметрии, однако, должно следовать, что гравитационная сила точно так же должна быть пропорциональна между Землей и падающим телом. Ясно, что оба эти расстояния совершенно равны, и если одно из них обозначить через
И если мы объединим уравнения 9 и 10, то получим:
Чтобы превратить эту формулу в равенство, мы должны умножить правую сторону уравнения на коэффициент пропорциональности. В этом случае давайте назовем его гравитационной постоянной и обозначим буквой
Это уравнение представляет собой ньютоновский закон гравитации в самом простом виде.
Теперь давайте посмотрим, сможем ли мы упростить это равенство. Рассмотрим гравитационную силу в терминах ускорения. Ускорение Земли столь мало, что мы можем не принимать его во внимание, а иметь дело лишь с ускорением падающего тела. В уравнении 6 мы можем заменить
Можем мы также избавиться и от
К сожалению, это тоже нам никак не помогает. Мы можем измерить ускорение падающего тела (
Однако, чему бы
Давайте использовать массу Земли как единицу массы, радиус Земли как единицу расстояния, а единицу гравитационного ускорения как единицу ускорения. Земля будет составлять ровно 1 массы Земли, расстояние падающего тела от центра будет равно точно 1 радиуса Земли, а ускорение падающего тела будет равно точно 1 единице гравитационного ускорения. В этом случае:
Пока мы будем придерживаться этих единиц, мы можем убрать