Я сказал:

— Земля в восемьдесят один раз массивнее Луны. Это значит, что если вы проведете линию между центрами Земли и Луны, то центр тяжести окажется на этой линии в точке, находящейся на расстоянии одной восемьдесят первой расстояния между центрами.

— О, но как высоко над поверхностью Земли это может быть? — спросил молодой человек.

— Эта точка не над поверхностью, — ответил я. — Она примерно в тысяче миль под поверхностью Земли.

— Ага! — воскликнул мой юный друг. — Я знал, что он пытается поймать нас.

В мое сердце закралось подозрение.

— Кто пытается поймать вас?

— Мой учитель, — радостно произнес собеседник. — Это моя домашняя работа.

И он повесил трубку.

Это послужило мне хорошим уроком. Больше никаких вопросов и ответов по телефону! Я не желаю участвовать в чьем-либо надувательстве!

Но этот разговор не прошел для меня даром. Он заставил меня задуматься о…

Тот факт, что центр тяжести системы Земля — Луна располагается в тысяче миль под поверхностью Земли, не должен затушевывать то, что он располагается в целых 2900 милях от центра Земли в направлении Луны. Луна вращается вокруг этого центра (являющегося одним из фокусов эллипса, который представляет собой орбита Луны) — но то же самое делает и Земля!

Центр Земли совершает небольшой месячный поворот относительно центра гравитации системы Луна — Земля, описывая кривую, в точности повторяющую движение Луны по эллипсу, только в 1/81 меньшего размера.

То, что земной эллипс столь мал, значения не имеет. Важно лишь, что Земля реагирует на притяжение Луны абсолютно так же, как Луна на притяжение Земли.

В самом деле, каждая имеющая массу частица во Вселенной является центром своего гравитационного поля и движется она в результате взаимодействия с гравитационным полем других частиц (если только ей не мешает какое-либо другое поле).

Теперь давайте рассмотрим несколько самых простых вселенных. Вселенную без частиц сразу отбросим как слишком простой случай. То же относится и ко вселенной с одной частицей, поскольку частица может проявить свое гравитационное поле только при взаимодействии с другими частицами. То, что мы определяем как гравитационное поле, в действительности не является гравитационным полем как таковым, это всегда гравитационное взаимодействие.

Следовательно, самым простым видом вселенной является вселенная с двумя частицами.

Если две частицы находятся на значительном расстоянии друг от друга, они будут взаимодействовать таким образом, чтобы приближаться друг к другу вдоль соединяющих их силовых линий, пока не встретятся.

Если изначально они двигались в разные стороны друг от друга, их движение постепенно будет замедляться. Если первоначальное движение медленнее, чем скорость убегания, то такое уменьшение скорости в конце концов приведет к тому, что частицы остановятся, после чего снова начнут двигаться, но уже навстречу друг другу, чтобы в конце концов столкнуться. Если же первоначальная скорость больше скорости убегания, они лишь несколько замедлят свое движение, но не остановятся. Таким образом, частицы будут всегда в движении.

Если же частицы двигались в одном и том же направлении, не по связывающим их силовым линиям, со скоростью меньшей скорости убегания, они станут перемещаться по двум связанным друг с другом эллипсам (как Луна и Земля). Два эллипса будут похожи по форме, но их размеры пропорциональны массам частиц. В зависимости от скорости и масс эксцентриситет примет значение от 0 (для круга) до 1 (для параболы).

Если две частицы двигаются относительно друг друга на скорости большей скорости убегания, каждая из них уйдет по гиперболе безвозвратно.

Все эти возможности могут быть точно рассчитаны при помощи относительно простого уравнения, впервые выведенного Исааком Ньютоном около трех столетий назад, а позднее измененного, с целью улучшения, Альбертом Эйнштейном.

Но предположим, что в нашей Вселенной имеется больше, чем две частицы. В этом случае каждая частица станет двигаться с силой, возникающей в результате сложения всех других гравитационных полей. Это будет оказывать постоянное влияние на другие частицы, поскольку гравитационное воздействие на них все время меняется.

Для более чем двух частиц не существует общего уравнения, которое бы точно описало их движение, — по крайней мере, его до сих пор не вывели. Нет даже общего уравнения, которое бы объяснило простое взаимодействие трех частиц. Спустя три столетия после Ньютона так называемая «проблема трех тел» остается нерешенной.

Согласно одному из постулатов теории Ньютона, «частица» — это тело, имеющее массу, но не имеющее объема, а в реальном мире ничего подобного не существует. Следовательно, даже «проблема двух тел», которая считается разрешенной, не отражает истинного положения вещей.

Из всего этого можно сделать вывод, что вся теория Ньютона — это лишь плод его фантазии. В конце концов, если решение существует только для двух не имеющих объем частиц — и ни для чего больше, — мы можем пользоваться этой теорией с тем же успехом, как и обветшавшими учениями средневековых школяров, и считать ангелов, которые могут танцевать на игольном ушке. Или же нет?

Есть разница, скажете вы. Даже если двое церковных ученых достигнут согласия по поводу точного количества ангелов, что могут танцевать на игольном ушке, то кому это важно? Теория же Ньютона, хоть и на первый взгляд оторванная от жизни, может быть применима к Земле.

Когда мы говорили, что «проблема трех тел» не решена, мы имели в виду математическую точку зрения. Применение этого уравнения не дает однозначного ответа.

Однако астрономы, работая над небесной механикой и не занимаясь чистой математикой, хотели получить не систему, описывающую движение несуществующих материальных точек, а способ расчета — хотя бы и приблизительный — движения и положения небесных тел в определенный период времени. Другими словами, их бы удовлетворили приблизительные вычисления.

Теперь давайте поговорим о субатомных частицах, имеющих массу и объем, которые близки к нулю. Это почти материальные точки, обладающие гравитационным полем, что, с точки зрения Ньютона, идеально. Единственной проблемой является то, что массы субатомных частиц столь малы, что гравитационные взаимодействия почти неопределимы, и, в частности, потому, что эти частицы подвергаются другим влияниям, в том числе влияниям полей, которые намного сильнее, чем гравитационные.

Известно, что гравитация является одним из четырех видов взаимодействий, известных во Вселенной. Два из них, однако, связаны с атомными ядрами, и их можно не принимать во внимание, если мы имеем дело с частицами большими, чем атом.

Другое взаимодействие является электромагнитным. Это преобладающий вид воздействия во всех объектах размером от атома до небольшого астероида. Силы, которые не позволяют материи распадаться, являются по своей природе электромагнитными.

Электромагнитное взаимодействие намного сильнее гравитации. Небольшой астероид легко сохраняет неправильную форму именно благодаря электромагнитным взаимодействиям — даже если гравитационное взаимодействие частиц заставляет его принять сферическую форму. В маленьком астероиде электромагнитные взаимодействия преобладают над воздействиями гравитационными.

Однако электромагнитные взаимодействия способны как притягивать, так и отталкивать, в материи разница между отталкиванием и притягиванием довольно мала. Что касается гравитации, то в ней, насколько известно, присутствует только притягивание, и, когда объект увеличивает свою массу или плотность (а возможно, и то и другое), общая интенсивность его гравитационного поля возрастает теоретически беспредельно. Большие астероиды, в том числе тела размером с Луну и Землю,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату