колебания. Однак о вне зависимости от того, возможно, это, или нет, содержит земля заряд, или нет, и каков может быть период колебаний — не подлежит ни малейшему сомнению тот факт, и мы дня- ми имели тому доказательство, что можно вырабатывать электрическое возбуждение достаточно мощное, чтобы его можно было принимать при помощи удобных инструментов в любой точке земной поверхности.

Предположим, что источник переменного тока подключен так, как показано на Рис. 21: одной своей клеммой к земле (удобней всего к магистралям водоснабжения), а другой к телу с большой поверхностью Р. Пр и возникновении электрических колебаний, произойдет движение электрического тока в направлении тела Р и от него. Переменный ток, проходя по земле, будет сосредоточиваться в, и рассредоточиваться от точки С — точки, где установлено соединение с землей. Таким образом, произойдет возбуждение в соседних точках на земной поверхности, расположенных в определенном радиусе. Но сила возбуждения уменьшается с увеличением расстояния. Следовательно, расстояние, на котором данный эффект можно будет воспринимать, будет зависеть от количества электричества, находящегося в движении. Одни м из ограничений величины потенциала тела Р является площадь его поверхности, поэтому они изолировано, а для того, чтобы зарядить его, необходим источник энергии большой мощности. Необходимо также создать условия, при которых генератор или источник S создавал бы одно и то же движение электричества, как если бы его цепь была замкнута. Таким образом, при наличии соответствующего оборудования, определенно вполне реально передавать Земле электрические колебания по крайней мере, при малом периоде. Остается только догадываться, на каком удалении от источника эти колебания можно принимать. Я бы хотел поведать вам еще об одном соображении, непосредственно касающегося вопроса об отношении земли к электрическому возбуждению. Несомненно, что в данном эксперименте, на поверхности земли может иметь место определенная плотность электричества, но очень-очень маленькая, в силу размеров земли. Это доказывается тем, что атмосферный воздух не является сильным дестабилизирующим фактором, то есть при распространении электрических колебаний по воздуху не происходят больших потерь энергии, что могло бы иметь место в случае, если бы плотность электричества на поверхности земли была бы большой. Теоретически, для того, чтобы создать возбуждение, которое можно было бы принимать на большом расстоянии от источника, или даже в любой точке земной поверхности, не требуется большого количества энергии. Сегодня уже совершенно ясно, что в любой точке, находящейся в рамках определенного радиуса удаления от источника о, при помощи резонанса можно привести в действие устройство с надлежащим образом подобранными параметрами самоиндукции и емкости. Но можно сделать не только это. Можно синхронизовать работу источника S с работой другого источника Sj, подобного первому, или любого количества таких источников. Это даст возможность усиливать колебания и распространять их по большой территории, либо осуществлять транспортировку электрической энергии, произведенной источником Sj, к источнику S при условии, что они работают в противофазе. Я думаю, что нет сомнений в том, что при помощи резонанса, вполне возможно в городских условиях приводить в действие электрические устройства от электрического осциллятора, находящегося в центральной точке, через систему трубопроводов, или по земле. Однако практическое решение этой проблемы принесло бы несоизмеримо меньше благ людям, нежели претворение в жизнь программы, позволяющей передавать информацию, а, возможно, и энергию, через землю, или окружающую среду. Рис 21. Если это в целом возможно, то расстояние уже не имеет никакого значения. В первую очередь необходимо изготовить соответствующие устройства, при помощи которых мы начнем наше наступление на эту проблему. Я посвятил немало времени и умственного напряжения данной теме, и полностью убежден, что это можно осуществить. Я также надеюсь, что мы доживем до того момента, когда это будет реализовано.

О СВЕТОВЫХ ЯВЛЕНИЯХ, ВЫЗЫВАЕМЫХ ВЫСОКОЧАСТОТНЫМ ТОКОМ ВЫСОКОГО НАПРЯЖЕНИЯ, И ОБЩИЕ ЗАМЕЧАНИЯ ПО ЭТОМУ ВОПРОСУ

Возвращаясь к световым эффектам, которые были основным предметом исследования, бы- ло бы правильным разделить все эффекты на четыре класса: 1. Нагрев твердого тела до белого каления. 2. Свечение. 3. Накал, или фосфоресценция разреженного газа. 4. Яркий свет в газо- вой среде при обычном давлении. Первый вопрос: 'Чем вызваны эти световые эффекты?'. Для того, чтобы дать исчерпывающий ответ на этот вопрос в свете принятых концепций, с учетом имеющегося опыта, и для того, чтобы вызвать дополнительный интерес к этой показательной лекции, мне необходимо подробно остановиться на одной особенности, которая мне представ- ляется очень важной, поскольку она обещает, помимо всего прочего, пролить больше света на природу большинства явлений, вызываемых электрическим током высокой частоты. Как я уже отмечал, очень важно, чтобы проводник, через который проходит переменный ток высокой ча- стоты, находился в атмосфере разреженного газа, либо в атомической среде в целом, посколь- ку это влияет на нагревание проводника током. Мои эксперименты, описанные некоторое время тому назад, показали, что чем больше частота и разность потенциалов, тем большее значение приобретает разреженный газ, в который погружен проводник, как фактор, влияющий на на- грев. Однако разность потенциалов, что я также уже отмечал, является более важным элемен- том, нежели частота. Если и разность потенциалов, и частота достаточно высоки, то благодаря наличию разреженного газа можно добиться почти полного нагревания. В предстоящих экспе- риментах будет продемонстрировано, как влияет разреженный газ, или в общем смысле, газ при обычном давлении и при других показателях давления, на накал, или на другие световые эффекты, вызванные подобного рода током.

Я взял две обычные 50-вольтовые лампы в 16 свечей с одинаковыми показателями по всем параметрам. Их отличие состояло в том, что у одной из них была открыта верхняя часть, так что воздух заполнил колбу лампы, а другая оставалась в своем промышленном исполнении и со- хранила соответствующую степень разряженности воздуха внутри колбы. Когда я подсоединил лампу с разряженным воздухом к клеммам вторичной обмотки катушки, которую я уже исполь- зовал, как, например, в экспериментах, изображенных на Рис. 15а, и включил ток, то нить на- кала, как Вы уже видели раньше, раскалилась добела. Когда я, вместо предыдущей, подключил вторую лампу, заполненную обычным воздухом, то нить накала также стала излучать свечение, но значительно менее яркое. Это т эксперимент лишь частично подтверждает истинность ут- верждений, которые я изложил выше. Здес ь отчетливо продемонстрирована важность наличия вокруг нити накала разреженного воздуха, но не настолько, насколько хотелось бы. Дело в том, что вторичная обмотка катушки, состоящая всего лишь из 150 витков, предназначена для вы- работки низкого напряжения, и, следовательно, разность потенциалов на клеммах лампы была низкой. Если бы я воспользовался другой катушкой, с большим количеством витков на вторич- ной обмотке, то эффект был бы более заметным, так как, как уже отмечалось ранее, он частич- но зависит от разности потенциалов. Но так как эффект подобный этому зависит также от частоты, было бы справедливым утверждение, что он зависит от периода времени, в пределах которого происходит изменение разности потенциалов. Че м больше изменение, тем более важ- ное значение приобретает газ как элемент нагрева. Я могу добиться более высокой частоты из- менений другим способом, которым, можно развеять любые возражения, которые могли бы возникнуть в отношении только что показанного эксперимента, даже если обе лампы соедине- ны последовательно, или множество ламп подключено к катушке. Но при этом последствия ре- акций, возникающих между первичной и вторичной катушками, не столь очевидны. Этого результата я добился заряжая блок конденсаторов через обычный трансформатор, который ра- ботал от источника переменного тока, а затем разряжая конденсаторы напрямую через цепь с малой самоиндукцией. Схема соединения показана на Рис. 19а, 19b и 19с.

На Рис. 22а, 22b и 22с тяжелые медные бруски В Вj соединены с противоположными слоями блока конденсаторов, или, в общем, таким образом, чтобы через них проходил бы ток высокой частоты, или неожиданный разряд.

Я подключил обычную 50-вольтовую лампу накаливания к брускам при помощи крепежей

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату