молекулы. При таких условиях обмен молекул был бы очень медленным, и теплота, вырабатываемая на стержне или вблизи него, была бы огромной. Но если бы частота постоянно увеличивалась, производимое тепло стало бы уменьшаться в силу очевидных причин. В положительной щётке электростатической машины обмен молекул очень быстрый, поток постоянно одного направления, и столкновений происходит меньше; отсюда тепловой эффект должен быть очень малым. Всё, что затрудняет легкость обмена, приводит к увеличению локально получаемой теплоты. Таким образом, если держать колбу над разрядным стержнем катушки так, чтобы она окружала щётку, то воздух в колбе очень быстро нагреется до высокой температуры. Если держать стеклянную трубку над щёткой так, чтобы воздушная тяга вытягивала щётку вверх, то из верхнего отверстия трубки вырывается обжигающий воздух. Любой предмет внутри щётки, конечно, быстро нагревается, что приводит к мысли о возможности использования этого теплового эффекта для той или иной цели.
Размышляя об этом необычайном явлении горячей щётки, мы не можем не задуматься о том, что подобный процесс должен иметь место и в обычном пламени; и кажется странным, что после всех прошедших столетий знакомства с огнем, сейчас, в эру электрического света и тепла, мы подошли, наконец, к осознанию того, что с незапамятных времен имели в нашем распоряжении 'электрический свет и тепло'. Также небезынтересно представить, что у нас есть возможный способ получения — не химическим путем — настоящий огонь, способный давать свет и тепло без сжигания какого-либо материала, без каких-либо химических процессов, и чтобы достичь этого, нам необходимо только усовершенствовать методы получения очень высоких частот и потенциалов. У меня нет сомнений в том, что если вызвать чередование потенциала с достаточной скоростью и мощностью, то щётка, образующаяся на конце провода, потеряет свои электрические характеристики и станет подобна пламени. Пламя должно обуславливаться электростатическим молекулярным эффектом.
Теперь это явление объясняет, и в этом едва ли можно усомниться, несчастные случаи, нередко происходящие во время грозы. Хорошо известно, что предметы часто загораются, даже если в них не ударила молния. Сейчас мы рассмотрим, каким образом это может произойти. На гвозде в крыше, например, или на каком-либо выступе, проводящем или ставшим таким из-за влажности, может образоваться мощная щётка. Если молния ударила где- то поблизости, это может заставить огромный потенциал чередоваться или флюктуировать, возможно, много миллионов раз в секунду. Молекулы воздуха интенсивно притягиваются и отталкиваются, и своими столкновениями производят такой мощный тепловой эффект, что возникает огонь. Вполне возможно представить, что корабль, плывущий по морю, может таким образом загореться сразу в нескольких местах. Если мы учтем, что даже при сравнительно малых частотах, получаемых с помощью динамо машины, и при потенциалах не более ста или двухсот тысяч вольт наблюдаются значительные тепловые эффекты, то можно представить, насколько мощнее они должны быть при частотах и потенциалах во много раз больше; и приведенное выше объяснение кажется, говоря без преувеличений, очень правдоподобным. Возможно, подобные объяснения уже предлагались, но я не располагаю сведениями о том, что до настоящего времени тепловые эффекты щётки, получаемой с помощью быстро переменного потенциала, демонстрировалось бы экспериментально, по крайней мере, не в столь заметной степени.
Если полностью исключить обмен молекул воздуха, местный тепловой эффект можно усилить настолько, что предмет накалится. Таким образом, например, если поместить маленький стержень или, предпочтительнее, очень тонкий провод или нить в неоткачанную колбу и соединить с выводом катушки, то его можно довести до накаливания. Можно представить это явление гораздо интереснее, если заставить верхний конец нити накала быстро вращаться по кругу, придав ему, таким образом, вид светящейся воронки (Рис. 15), которая расширяется с повышением потенциала. Когда потенциал невелик, конец нити может совершать беспорядочные движения, внезапновменяющиеся, или может описывать эллипс; но при очень высоком потенциале нить всегда вращается по кругу, так же, как и топкий провод, свободно присоединенный к выводу катушки. Эти движения вызваны, конечно, столкновениями молекул и неравномерным распределением напряжения по причине неровности и несимметричности провода или нити. Вероятно, подобные движения отсутствовали бы в случае идеально симметричного и отполированного провода. То, что это движение не обусловлено другими причинам, вполне очевидно, потому что оно не имеет определенного направления, и потому, что в очень сильно откачанной колбе оно прекращается совсем. Возможность довести предмет до накаливания в откачанной колбе, или даже совсем открытый, как представляется, открыла бы нам способ получить световые эффекты, которые пригодились бы для полезных целей, когда улучшатся методы получения быстро переменяющихся потенциалов.
При применении коммерческой катушки получение очень мощной щётки сопряжено со значительными трудностями, потому что когда используются высокие частоты и огромные потенциалы, может подвести даже самая лучшая изоляция. Обычно катушка изолирована достаточно хорошо, чтобы выдерживать напряжение между соседними намотками, так как два провода, с двойной шелковой пропарафиненной оплеткой, выдерживают напряжение в несколько тысяч вольт; трудность лежит в основном в предотвращении пробоя от вторичной обмотки к первичной, которому очень способствует испускание потоков от последней. В обмотке, конечно, самое сильное напряжение между намотками, но обычно в большей обмотке намоток так много, что опасность внезапного пробоя не столь велика. Обычно в этом направлении трудностей не встречается, и, кроме того, возможность внутренних повреждений в катушке сильно снижается из-за того, что наиболее вероятный эффект — это просто постепенное нагревание, которое при достаточном усилении не может остаться незамеченным. Так что главная необходимость — предотвратить появление потоков между первичной обмоткой и трубкой, не только из-за нагревания или возможных повреждений, но также и из- за того, что потоки могут значительно уменьшать получаемую на выводах разность потенциалов. Несколько советов о том, как это предотвратить, вероятно окажутся полезными в большинстве этих экспериментов с обыкновенной индукционной катушкой.
Один из способов, например, — это намотать короткую первичную обмотку (Рис. 16а), чтобы при такой длине разность потенциалов была не столь велика, чтобы вызвать пробой потоков через изоляционную трубку. Длину первичной обмотки следует определять экспериментально. Оба конца обмотки следует вывести с одной стороны через заглушку из изоляционного материала, вставленную в трубку как показано на рисунке. При таком расположении один вывод вторичной обмотки присоединяется к предмету, площадь которого определяется с большой тщательностью так, чтобы получать наибольший подъем потенциала. На другом выводе появляется мощная щётка, с которой можно экспериментировать.
Описанная выше схема приводит к необходимости использования первичной обмотки сравнительно небольшого размера, и она имеет тенденцию нагревается, когда хочется получать мощные эффекты в течение продолжительного времени. В таком случае лучше использовать обмотку больше (Рис. 16b) и вводить её с одной стороны трубки, пока не начнут появляться потоки. В этом случае ближайший вывод вторичной обмотки можно подсоединить к первичной или к земле, что практически одно и то же, если первичная обмотка непосредственно присоединена к машине. В случае с заземлением хорошо было бы экспериментально определить частоту, которая больше всего подходит для условий данного испытания. Другой способ более или менее устранить утечку потоков — это намотать первичную обмотку секциями и сделать подводку к ней из отдельных хорошо изолированных источников.
В большинстве этих экспериментов, когда нужно получать мощные кратковременные эффекты, полезно использовать с первичными обмотками железные сердечники. В этом случае можно намотать очень большую первичную обмотку и расположить её бок о бок рядом со вторичной, и, подсоединив ближайший вывод вторичной к первичной, вводят гладкий стальной сердечник через первичную обмотку во вторичную настолько, насколько позволят потоки. В этих условиях можно вызвать появление на другом выводе вторичной обмотки чрезвычайно мощной щётки длиной в несколько дюймов, которую вполне можно назвать 'Огнем Святого Эльма'. Это самым мощный озонатор, на самом деле настолько мощный, что всего нескольких минут достаточно, чтобы все помещение наполнилось запахом озона, несомненно, обладающего поразительными химическими свойствами.
Для получения озона прекрасно подходят токи очень высокой частоты, не только из-за их преимуществ в плане преобразований, но и потому что озонирующее действие разряда зависит как от частоты, так и от потенциала; и это несомненно подтверждает эксперимент.