простого правила при создании коммерческих катушек приводит к разрушению многих дорогостоящих катушек.
На этапе, когда возникает потоковый разряд, или при еще больших частотах, можно достаточно сильно сближая разрядные стержни и соответственно регулируя эффект емкости, произвести настоящие брызги из маленьких серебристо-белых искр, или же получить пучок чрезвычайно тонких серебристых нитей (Рис. 6) посреди мощной щетки — каждая искра или нить возможно соответствует одному чередованию. Это явление, получаемое при определенных условиях, является, наверное, самым красивым разрядом, а когда против него направлена струя воздуха, оно представляет необыкновенное зрелище. Брызги искр, попадающие на тело, вызывают неприятные ощущения, тогда как, если разряд просто течет, ничего подобного не ощущается, если держать в руках большие проводящие предметы для защиты от получения небольших ожогов.
Если частоту увеличить еще больше, то катушка не даст никакой искры, если только на сравнительно малых расстояниях, и можно наблюдать пятую типичную форму разряда (рис. 7). Тенденция к истечению и рассеянию тогда настолько велика, что когда образуется щетка на одном из разрядных стержней, то искрение отсутствует, даже в том случае, если неоднократно, трогать их рукой, как я делал, или же держать какой-нибудь проводящий предмет внутри, потока; но что еще более необычно, светящийся поток было совсем не легко искривить, поднося к нему проводящее тело.
На этой стадии потоки, видимо, совершенно свободно проходят через изоляцию значительной толщины, и особенно интересно изучить их поведение. Для этой цели удобно подсоединить к контактам катушки два металлических шара, которые можно помещать на любом желаемом расстоянии, Рис. 8. Шары предпочтительнее, чем пластины, так как в этом случае можно лучше наблюдать разряд. Внося диэлектрические тела между шарами, можно наблюдать красивые явления разряда. Если шары расположены достаточно близко, и искра играет между ними, то при внесении между ними тонкой эбонитовой пластинки искра, немедленно исчезает, и разряд расширяется в интенсивно светящийся круг нескольких дюймов в диаметре, если шары достаточно большие. Прохождение потоков нагревает и через некоторое время размягчает резину настолько, что этим способом можно склеить вместе две пластины. Если шары расположены настолько далеко друг от друга, что искры между ними нет, и даже если они расположены за пределами разрядного расстояния, внесение толстой пластины из стекла сразу возбуждает разряд, идущий от шаров к стеклу в форме светящихся потоков. Кажется почти, будто эти потоки проходят через диэлектрик. На самом деле это не так, потому что потоки существуют благодаря молекулам воздуха, которые чрезвычайно возбуждаются в пространстве между противоположно заряженными поверхностями шаров. Когда нет никакого другого диэлектрика, кроме воздуха, бомбардировка идет, но она очень слабая, чтобы её можно было увидеть; от внесения диэлектрика индукционный эффект сильно увеличивается и, кроме того, летящие молекулы воздуха встречают препятствие, и бомбардировка становится настолько интенсивной, что потоки начинают светиться. Если бы мы могли каким-нибудь механическим способом вызвать такое чрезвычайное возбуждение молекул, то могли бы получить такое же явление. Струя воздуха, вытекающего через небольшое отверстие под огромным давлением и ударяющаяся об изоляционный материал, такой как стекло, может светиться в темноте, и может быть возможным получить таким способом фосфоресценцию стекла или других изоляторов.
Чем выше диэлектрическая проницаемость вносимого диэлектрика, тем мощнее производимый эффект. Благодаря этому потоки проявляются при чрезвычайно высоких потенциалах, даже при толщине стекла от полтора до двух дюймов. Но кроме нагревания, вызванного бомбардировкой, определенное нагревание идет, без сомнения, и в диэлектрике, причем в стекле значительно больше, чем в эбоните. Я отношу это явление к большей диэлектрической проницаемости у стекла, вследствие которой, при одинаковой разности потенциалов, в стекло вбирается большее количество энергии, чем в резину. Это как если подсоединить к батарее медный и латунный провода одинаковых размеров. Медный провод, хотя и являясь более совершенным проводником, будет нагреваться сильнее, по причине того, что вбирает больше тока. Таким образом, то, что в иных обстоятельствах является положительным качество стекла, здесь превращается в недостаток. Стекло обычно дает дорогу [пробою] гораздо быстрее, чем эбонит; когда оно нагревается до определенной степени, разряд внезапно пробивает через [него] в определенной точке, принимая затем форму обычной дуги.
Эффект нагрева, вызванный молекулярной бомбардировкой диэлектрика, конечно, уменьшился бы, при повышении давления воздуха, и при огромном давлении он стал бы ничтожен, если соответственно не увеличить частоту.
В этих экспериментах мы можем часто наблюдать, что если шары расположены за пределами разрядного расстояния, то приближение, например, стеклянной пластины может индуцировать искру, проскакивающую между шарами. Это происходит, когда емкость шаров несколько ниже критического значения, дающего самую большую разницу потенциалов на выходах катушки. Приближение диэлектрика увеличивает диэлектрическую проницаемость пространства между шарами, давая такой же эффект, как если бы увеличивалась емкость шаров. Напряжение на выводах может тогда вырасти настолько, что воздушное пространство пробивается. Эксперимент лучше всего производить с плотным стеклом или слюдой.
Еще одно интересное наблюдение с пластиной из изоляционного материала: когда разряд проходит через нее, она сильно притягивается одним из шаров, а именно тем, который ближе к ней. Это обусловлено, очевидно, меньшим механическим действием бомбардировки с той стороны, и, возможно, также большей электризацией.
Из поведения диэлектриков в этих экспериментах мы можем сделать вывод, что наилучшим изолятором для этих быстро переменяющихся токов был бы именно тот, который обладал бы наименьшей диэлектрической проницаемостью и в тоже время мог выдерживать самую большую разность потенциалов. Это, таким образом, указывает нам два диаметрально противоположных способа обеспечения нужной изоляции, а именно: использовать либо хороший вакуум, либо газ под большим давлением; но первое было бы предпочтительнее. К сожалению, ни один из этих двух способов не осуществим легко на практике.
Особенно интересно отметить поведение очень высокого вакуума в этих экспериментах. Если тестовую трубку с внешними электродами и откачанную до наивысшей возможной степени подсоединить к выводам катушки (Рис. 9), то электроды трубки немедленно нагреются до высокой температуры, и стекло на каждом конце трубки будет сильно фосфоресцировать, но середина трубки оказывается сравнительно темной и некоторое время остается холодной.
Когда частота настолько высока, что наблюдается разряд, показанный на Рис. 7, в катушке, без сомнения, происходит значительное рассеивание. Тем не менее катушка может работать длительное время, потому что нагревание постепенное.
Несмотря на то, что разность потенциалов может быть огромной, мало что чувствуешь, когда разряд проходит сквозь тело, если защищены руки. Это происходит в некоторой степени благодаря более высокой частоте, но в основном из-за того, что во вне становится меньше энергии, когда разность потенциалов достигает огромной величины, благодаря тому обстоятельству, что с ростом потенциала энергия, поглощаемая катушкой, растет как квадрат потенциала. До определенного момента энергия во вне увеличивается вместе с ростом потенциала, затем она начинает быстро спадать. Таким образом, в действии обыкновенной индукционной катушки высокого напряжения существует любопытный парадокс: в то время как при определенном токе через первичную обмотку удар может оказаться фатальным, при токе во много раз сильнее этого он может быть совершенно безвредным, даже если частота одинакова. При высоких частотах и чрезвычайно высоких потенциалах, когда выходы катушки не подсоединены к некоторого размера предметам, практически вся энергия, подаваемая в первичную обмотку, забирается катушкой. Не наблюдается ни пробоя, ни местных повреждений, но весь материал, изоляционный и проводящий, однородно нагревается.
Во избежание недоразумений в отношении физиологического действия переменных токов очень высокой частоты я считаю необходимым сказать, что хотя они, бесспорно, несравненно менее опасны, чем токи низкой частоты, не следует всё же полагать, что они совсем безвредны. Вышесказанное относится исключительно к токам от обыкновенной индукционной катушки высокого напряжения, токи которой обязательно очень малы; тики же, получаемые непосредственно от машины или от вторичной обмотки с