проводники, которое вращается между наконечниками возбуждающего магнита. Для намотки проводников якоря я нашел самым удобным следующий способ способ. Я изготовил из твердой бронзы кольцо нужного размера. Это кольцо и обод колеса были снабжены нужным количеством штырьков, и оба закреплены на плоскости. Когда проводники якоря был намотаны, штырьки срезались, и концы проводов закреплялись двумя кольцами, которые, соответственно, привинчивались к бронзовому кольцу и ободу колеса. После этого все можно было снимать, оно составляло прочную конструкцию. Проводники в такой машине должны делаться из листовой меди, толщина которой, кончено, зависит от толщины полюсных наконечников; или же следует использовать тонкие переплетенные провода.

На рис. 3 показана машина меньшего размера, во многом похожая на предыдущую, только здесь поводники якоря и катушка возбуждения закреплена неподвижно, а только вращается болванка из кованого железа.

Если бы я пустился в дальнейшие подробности конструкции этих машин, это только излишне удлиннило бы это описание. Кроме того, они были несколько более глубоко описаны в Electrical Engineer за 18 Марта 1891 года. Однако, я полагаю, совсем неплохо было бы привлечь внимание исследователя к двум моментам. Хотя важность их и самоочевидна, исследователь, тем не менее, склонен их недооценивать. А именно, это локальное воздействие в проводниках, которого ни в коем случае нельзя допускать, и зазор, который должен быть мал. Я могу добавить, что ввиду желательности использования высоких периферийных скоростей якорь следует делать очень большого диаметра, чтобы избежать трудноосуществимых скоростей приводных ремней. Из нескольких типов этих машин, сделанных мною, с машиной, изображенной на Рис. 1, у меня возникло всех меньше проблем при создании и сборке, как впрочем и при обслуживании ее, да и в целом, это была хорошая экспериментальная машина.

При работе с индукционной катушкой при очень быстро переменяющихся токах среди отмеченных первыми световых явлений были, конечно, те, что производились разрядами высокого напряжения. Когда число чередований в секунду увеличивается, или же когда — при их высоком числе — изменяется ток через первичную обмотку, разряд постепенно менялся в своих проявлениях. Было бы трудно описать все происходящие второстепенные изменения, а так же условия, которые их вызывают, но можно выделить пять очевидных форм разряда.

Сначала можно наблюдать слабый, чувствительный разряд в виде топкой слабо окрашенной нити (рис. 4а). Этот разряд появляется всегда, когда, при большом числе перемен в секунду, ток через первичную обмотку очень мал. Несмотря на чрезвычайно малый ток, скорость изменения велика, и разность напряжений на концах вторичной обмотки поэтому значительна, так что дуга устанавливается на больших расстояниях; но приведенное в движение количество 'электричества' незначительно, едва лишь достаточное, чтобы поддерживать очень тонкую нитевидную дугу. Она чрезвычайно чувствительна, и ее можно довести до состояния, когда на нее будет действовать даже одно лишь дыхание вблизи катушки, и если ее не защитить как следует от потоков воздуха, она постоянно будет извиваться. Тем не менее, в этом виде она чрезвычайно стойкая, и если выводы сблизить, скажем, на одну треть разрядного расстояния, то сдуть её можно будет только с очень большим трудом. Эта исключительная устойчивость дуги, когда она короткая, в основном обусловлена тем, что она чрезвычайно тонка, и поэтому являет потоку воздуха очень малую поверхность. А ее огромная чувствительность, когда она очень длинная, обусловлена вероятно движением частиц пыли, взвешенных в воздухе.

Когда ток через первичную обмотку возрастает, разряд становится шире и сильнее, и эффект емкости катушки становится видимым до тех пор, когда, наконец, при определенных условиях не образуется белая яркая дуга, рис. 4Ь, часто толщиной в палец и бьющая через всю катушку. Она выделяет значительное тепло и еще может характеризоваться отсутствием высокого звука, который сопровождает менее мощные разряды. Получить удар от катушки при данных условиях я бы не советовал, хотя при других условиях, [даже] когда напряжение выше, удар от катушки можно получить безо всяких последствий. Чтобы произвести разряд такого рода, число перемен в секунду не должно быть слишком велико для данной используемой катушки; а, вообще, говоря, должны соблюдаться определенные отношения между емкостью, самоиндукцией и частотой.

Важность этих элементов в цепи переменного тока сегодня хорошо известна, и при обычных условиях применимы общие правила. Но в индукционной катушке преобладают исключительные условия. Во-первых, самоиндукция до установления дуги мало важна, когда она уже предъявляет свои права, но, по-видимому, никогда не столь явно, как в обычных цепях переменного тока, потому что емкость распределена по всей катушке, и по причине того, что катушка обычно разряжается через очень большие сопротивления; отсюда токи чрезвычайно малы. Во-вторых, емкость постоянно растет в увеличением потенциала, в результате поглощения, которое проявляется в значительной степени. Благодаря этому не существует критической взаимосвязи между этими величинами, и по-видимому обычные правила неприменимы. Как только потенциал увеличивается — вследствие либо увеличившейся частоты, либо возросшего тока через первичную обмотку, количество хранимой энергии становится больше и больше, и емкость приобретает все большую и большую значимость. До определенной точки емкость полезна, но после нее становится огромной помехой. Это следует из того, что каждая катушка дает наилучший результат при определенных частоте и первичном токе. Очень большая катушка, при работе с токами очень высокой частоты, может не давать 8 искру и в 1/ дюйма. Подключая к выводам емкость, ситуацию можно улучшить, но что на самом деле катушке требуется — это более низкая частота.

При возникновении яркого разряда условия очевидно таковы, что через цепь заставляют течь самый большой ток. Этих условий можно достичь меняя в широких пределах частоту, но, при заданном первичном токе, самая высокая частота, при которой все еще может образовываться яркая дуга, определяет максимальное разрядное расстояние катушки. При ярком разряде сильных эффектов емкости незаметно; тогда скорость, с которой энергия накапливается, просто равна скорости, с которой она может сбрасывается через цепь. Такой разряд является самым суровым испытанием для катушки; если происходит пробой, то как в слишком сильно заряженной Лейденской банке. Для грубого приближения могу сказать, что с обычной катушкой, с сопротивлением, скажем, в 10,000 Ом, самая мощная дуга получается примерно при 12,000 переменах в секунду.

Когда частота возрастает за пределы этого значения, потенциал, конечно же, возрастает, но разрядное расстояние может, тем не менее, сократиться, сколь бы парадоксальным это не выглядело. По мере роста потенциала катушка все больше и больше приобретает свойства статической машины, до тех пор, пока, наконец, нашему взору не предстанет прекрасное явление — потоковый разряд, рис. 5, который может получаться во всю длину катушки. На этом этапе потоки начинают свободно исходить из всех острий и выступов. Множество потоков можно также увидеть в пространстве между первичной обмоткой и изоляционной трубкой. Если потенциал слишком высок, то они будут появляться всегда, даже при низкой частоте, и даже если первичная обмотка заизолирована дюймом сургуча, твердой резины, стекла или другого изолирующего материала. Это очень существенно ограничивает выход катушки, но позже я покажу, каким образом мне удалось в значительной степени преодолеть этот недостаток в обычной катушке.

Помимо напряжения, интенсивность потоков зависит еще от частоты; но если катушка будет очень большая, то они появятся, неважно, сколь низкие используются частоты. Например, в очень большой катушке, сопротивлением 67,000 Ом, которую я сделал некоторое время назад, они появлялись при столь низкой частоте как 100 перемен в секунду и менее, причем изоляцию вторичной обмотки составляли 3/4 дюйма эбонита. Когда они сильные, то издают звук, похожий на тот, что производит машина Гольца при зарядке, но только более мощный, и они испускают сильный запах озона. Чем ниже частота, тем больше вероятность, что они внезапно повредят катушку. При очень высоких частотах они свободно могут проходить, не вызывая никакого эффекта, кроме медленного и равномерного нагрева изоляции.

Существование этих потоков подтверждает важность создания дорогостоящей катушки, которая позволяла бы смотреть сквозь трубку, окружающую первичную обмотку, и легко заменять первичную обмотку. Или же пространство между первичной и вторичной обмотками должно было бы полностью заполнено изоляционным материалом, чтобы исключить любое присутствие воздуха. Несоблюдение этого

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату