соответствующими металлами при попадании на них фотонов, французский физик Луи де Бройль заключил, что и электроны также должны быть и волнами, и частицами. На самом деле вся материя должна демонстрировать эту двойственную природу — быть иногда твердыми частицами, а иногда — колеблющимися волнами. Вот почему в эксперименте можно обнаружить то одно, то другое.
На исключительно малых масштабах материю в действительности не описывают ни «частица», ни «волна». Элементарные составные части материи являются немного и тем и другим — частицами-волнами. Де Бройль изобрел формулу для описания частиц-волн.
Далее произошло важнейшее для нашего рассказа событие. Эрвин Шредингер взял формулу де Бройля и превратил ее в уравнение, описывающее движение частиц-волн. Подобно тому как законы движения Ньютона имели фундаментальное значение для классической механики, так и уравнение Шредингера стало фундаментом механики квантовой.
Эрвин Шредингер родился в Вене в 1886 году в результате смешанного брака. Его отец Рудольф Шредингер занимался производством погребальных одежд — навощенных одеяний, используемых на саваны для умерших; он, кроме того, был ботаником. Рудольф был католиком, а мать Эрвина Георгина Эмилия Бренда — лютеранкой. С 1906 по 1910 год Эрвин изучал физику в Вене под руководством Франца Экснера и Фридриха Хазенорля, ставшего ассистентом Экснера в 1911 году. Он защитил диссертацию на право преподавания в 1914-м, в момент начала Первой мировой войны, и провел войну в качестве офицера австрийской артиллерии. Два года спустя после окончания войны он женился на Аннемари Бертель. В 1920 году он занял соответствующую доценту должность в Штутгарте, а с 1921-го стал полным профессором в Бреслау (ныне Вроцлав в Польше).
Уравнение, носящее теперь его имя, Шредингер опубликовал в 1926 году в статье, где показал, что из этого уравнения можно получить правильные уровни энергии для спектра атома водорода[67]. За ней в скором времени последовали три другие ключевые статьи по квантовой теории. В 1927 году он приехал к Планку в Берлин, но в 1933-м из-за антисемитизма нацистов уехал из Германии в Оксфорд, где его приняли в Колледж Магдалины. Вскоре после этого он вместе с Полем Дираком был удостоен Нобелевской премии по физике.
Шредингер вел вызывающий образ жизни, живя одновременно с двумя женщинами, что, конечно, задевало тонкие, чувствительные натуры оксфордских донов[68].
Не прошло и года, как он снова переехал, на этот раз в Принстон, где ему предложили постоянную работу, но он не стал принимать этого предложения — возможно, из-за того, что его желание жить одной семьей и с женой, и с любовницей вызывало в Принстоне взгляды ничуть не более благосклонные, чем в Оксфорде. В конце концов в 1936 году он осел в австрийском Граце, не обращая внимания на пуританскую нетерпимость австрийцев.
Присоединение Австрии Гитлером создало для Шредингера немалые сложности из-за его известной неприязни к нацистам. Он публично отрекся от своих взглядов (и много лет спустя извинялся за это перед Эйнштейном). Но уловка не сработала: он лишился работы, поскольку считался политически неблагонадежным, и ему пришлось бежать в Италию.
В конце концов Шредингер поселился в Дублине[69]. В 1944 году вышла его книга «Что такое жизнь?» — захватывающая, но неудачная попытка применить квантовую физику к живым организмам. Его идеи основывались на концепции «негэнтропии» — тенденции живого не подчиняться второму закону термодинамики (или как-то обходить его действие). Шредингер подчеркивал, что гены живых существ должны представлять собой некие сложные молекулы, содержащие закодированные инструкции. Эти молекулы теперь называются ДНК, но их структура была открыта только в 1953 году Фрэнсисом Криком и Джеймсом Уотсоном, вдохновленными — отчасти — Шредингером.
В Ирландии Шредингер не изменял своему свободному отношению к сексуальности, вступая в связи со студентками и став отцом двух детей от разных матерей.
Он умер в Вене от туберкулеза в 1961 году.
Более всего Шредингер известен благодаря своему коту. Не настоящему коту, а тому, который участвует в мысленном эксперименте. Его нередко интерпретируют как причину, по которой шредингеровские волны[70] нельзя рассматривать как нечто реально физическое, а надо воспринимать как некое завуалированное описание, которое само по себе проверить невозможно, но из которого проистекают верные следствия. Однако эта интерпретация не вполне последовательна — если волны не существуют, то почему выводимые из них следствия столь хорошо применимы?
Как бы то ни было, вернемся к коту. Согласно квантовой механике, частицы-волны могут интерферировать друг с другом, налагаясь одна на другую и при этом усиливая друг друга в тех случаях, когда пик одной волны попадает на пик другой, или же гася друг друга, когда пик накладывается на провал. Поведение такого типа называется суперпозицией, так что квантовые частицы-волны могут создавать суперпозиции, накладываясь друг на друга, — откуда следует, что они потенциально содержат множество возможных состояний, но при этом не находятся ни в одном из них самом по себе. Согласно Бору и знаменитой «копенгагенской интерпретации» квантовой теории, в этом-то и состоит естественное положение вещей. Только тогда, когда мы производим наблюдение какой-либо физической величины, мы заставляем ее выйти из некоторой квантовой суперпозиции и оказаться в каком-то единственном «чистом» состоянии.
Такая интерпретация хорошо работает для электронов, однако Шредингер задался вопросом о том, что она будет означать для кота. В его мысленном эксперименте запертый в ящике кот может находиться в суперпозиции состояний жизни и смерти. Когда вы открываете ящик, вы совершаете наблюдение над котом и тем самым заставляете его оказаться или в одном состоянии, или в другом[71]. Как заметил в «Маскараде» Терри Пратчетт, коты устроены не так. Кот-супермачо Грибо появляется из ящика в третьем состоянии — до чертиков разъяренным.
Шредингеру тоже было известно, что коты устроены иначе, хотя и по другим причинам. Электрон — микроскопическая вещица и ведет себя тем или иным образом на квантовом уровне. Он обладает (когда мы потрудимся сделать соответствующее измерение) определенной координатой, или скоростью, или спином, описать которые относительно несложно[72]. Кот же — существо макроскопическое, и с ним все по-другому. Можно устроить суперпозицию состояний электрона, но не кота. У нас с женой две кошки, и когда они пытаются устроить суперпозицию, результат состоит из летящей шерсти и двух крайне негодующих кошек. Жаргонное слово здесь — это «декогеренция», которая объясняет, почему в повседневной жизни большие квантовые системы, подобные котам, выглядят как привычные «классические» системы. Декогеренция говорит нам, что кот состоит из столь большого числа частиц-волн, что они все перепутываются и разрушают суперпозицию за время, меньшее, чем свет затрачивает на прохождение расстояния, равного диаметру электрона. Таким образом, коты, являясь макроскопическими системами, состоящими из очень большого числа квантовых частиц, ведут себя как коты. Они могут быть или живыми, или мертвыми, но не могут находиться в обоих этих состояниях сразу.
Тем не менее на достаточно малых масштабах — а мы говорим о вещицах по-настоящему малых, а вовсе не таких, которые можно разглядеть в обычный микроскоп, — вселенная ведет себя в точности так, как ей велит квантовая физика, и ей удается делать две разные вещи в один момент времени. И это все меняет.
Насколько странным должен быть квантовый мир, стало ясно из работ Вернера Гайзенберга. Гайзенберг был блестящим физиком-теоретиком, но его знакомство с экспериментом было столь ничтожным, что на экзамене, необходимом для защиты диссертации, он не смог ответить на простые вопросы о телескопах и микроскопах. Он даже не знал, как работает аккумуляторная батарея.
Август Гайзенберг женился на Анне Велайн в 1899 году. Он был лютеранином, а она — католичкой, и ей пришлось перейти в его религию, для того чтобы их брак состоялся. У них было много общего: он был преподавателем и специалистом по Античности, специализирующимся в древнегреческом, она же была дочерью преподавателя и специалиста по греческим трагедиям. Их первый сын Эрвин родился в 1900 году и