мгновения и наблюдали его спокойный переход в объятия смерти.

Пять дней спустя Крелли написала сестре Катарины Ханстеен[25] Генриэтте Фридрихсен с просьбой сообщить печальную новость Катарине. «Моя драгоценная, только долг мог заставить меня просить об этом, ибо я бесконечно обязана вашей сестре, фру Ханстеен. Дрожащей рукой беру я перо, чтобы попросить вас сообщить ей, что она потеряла преданного, доброго сына, любившего ее бесконечно».

Мой Абель мертв! <…> Я потеряла все в этом мире. Я ничего, ничего не чувствую. Простите меня, я так несчастна, что не в силах более писать. Попросите ее принять приложенную к письму прядь волос моего Абеля. Подготовить вашу сестру к этому покорнейше просит вас ваша несчастная К. Кемп.

Глава 7

Революционер-неудачник

Математики нечасто бывают всем довольны.

Каждая успешно решенная задача только ставит новые вопросы. Вскоре после смерти Абеля данное им доказательство того, что некоторые уравнения пятой степени неразрешимы в радикалах, начало получать признание. Но работа Абеля была только началом. Хотя ни одна из предыдущих попыток решить все уравнения пятой степени не увенчалась успехом, некоторые особенно умные математики смогли доказать, что определенные уравнения пятой степени можно, тем не менее, решить в радикалах. Не только те, для которых решение очевидно, типа x5 ? 2 = 0, откуда x = 5v2, но и довольно неожиданные, например, x5 + 15x + 12 = 0, — хотя его решение слишком сложно, чтобы здесь его приводить.

Создалась непонятная ситуация. Если некоторые уравнения пятой степени разрешимы, а другие нет, что тогда отличает уравнения одного типа от другого? Ответ на этот вопрос изменил развитие математики и математической физики. Несмотря на то что ответ был получен более 170 лет тому назад, он продолжает приводить к новым важным открытиям. В ретроспективе выглядит просто потрясающим, насколько далеко простираются следствия ответа на невинный вопрос о внутреннем устройстве математики. Решение уравнений пятой степени не имело, по-видимому, никаких практических применений. Если некоторая задача в инженерных науках или астрономии требовала для своего решения уравнения пятой степени, всегда находились численные методы найти ответ с любым желаемым числом знаков после запятой. Разрешимость — или неразрешимость — уравнения пятой степени в радикалах была классическим примером «чистой» математики, примером вопроса, задаваемого по причинам, которые интересовали математиков, и только их одних.

Как же сильно можно ошибаться…

Абель обнаружил препятствие к решению определенных уравнений пятой степени в радикалах. Он смог доказать, что это препятствие на самом деле не позволяет таким решениям существовать по крайней мере для некоторых уравнений пятой степени. Следующий шаг вперед — ось, вокруг которой крутится весь наш рассказ, — выпал на долю того, кто тщательно смотрел дареному коню в зубы и задавал вопросы, от которых математики не могут удержаться всякий раз, когда некоторая важная задача оказывается решена: «Да, все это очень здорово, но почему оно на самом деле работает?»

Такой подход может показаться несколько негативистским, но мы снова и снова убеждаемся в его ценности. Стоящая за этим философия заключается в том, что большинство математических задач слишком сложны для решения. Так что, когда кому-то удается решить нечто, что ставило в тупик всех предшественников, недостаточно просто отпраздновать великое решение. Или автору просто повезло (математики не слишком верят в везение такого типа), или же решение оказалось возможным по некоторым специальным причинам. И если удается понять причину… что ж, множество других задач могут оказаться разрешимыми с применением подобных же методов.

Так что, в то время как Абель шлифовал ответ на конкретный вопрос «Каждое ли уравнение пятой степени разрешимо?» — ответ, суть которого сводится к ясному «нет», — еще более глубокий мыслитель боролся с гораздо более общей проблемой: какие уравнения вообще можно решить в радикалах, а какие нет? Справедливости ради скажем, что Абель начал думать в этом направлении и мог бы даже найти ответ, если бы туберкулез пощадил его.

Человеком, которому предстояло изменить ход развития математических наук, был Эварист Галуа, и история его жизни — одна из наиболее драматичных и даже наиболее трагичных в истории математики. К тому же его потрясающие открытия едва не пропали.

Если бы Галуа не появился на свет или если бы его работы все-таки пропали, кто-нибудь, без сомнения, в конце концов сделал бы те же самые открытия. Пути многих математиков пролегали через эту область науки, порой на расстоянии всего шага от открытия. В некоторой альтернативной вселенной некто, обладающий талантами и проницательностью Галуа (а быть может, некий Нильс Абель, сумевший еще несколько лет противостоять туберкулезу), в конце концов добрался бы до того же круга идей. Но в нашей вселенной это был Галуа.

Он родился 25 октября 1811 года в Бург-ля-Рен — в те дни это была деревушка неподалеку от Парижа. Сейчас это пригород в департаменте О-де-Сен, на пересечении автострады №20 и трассы D60. Трасса D60 — это авеню Галуа. В 1792 году деревню Бург-ля-Рен переименовали в Бург-л'Эгалите, в духе политических потрясений того времени и сопутствующей им идеологии: «Город Королевы» заменили на «Город Равенства». В 1812 году старое название вернули, но в воздухе еще чувствовалась революция.

Отец — Николя-Габриэль Галуа — был убежденным республиканцем и вождем деревенской либеральной партии Liberte в городе Egalite, — которая видела свою основную задачу в устранении монархии. Когда в ходе наспех состряпанного компромисса 1814 года на трон вернули короля Людовика XVIII, Николя-Габриэль занял кабинет мэра города, где, учитывая его политические наклонности, ему вряд ли было комфортно.

Мать — Аделаид-Мари, урожденная Демант. Ее отец был стряпчим, то есть помощником адвоката, осуществлявшим ряд законно-правовых действий, однако без права самостоятельно вести практику; в его задачи входило формулировать мнения по поводу судебных дел. Аделаид-Мари свободно читала по-латыни и передала сыну свое классическое образование.

В течение первых двенадцати лет Эварист оставался дома, а его образованием занималась мать. Когда ему было десять, он мог поступить в коллеж в Реймсе, но мать, по-видимому, считала, что ему еще рано покидать дом. Однако в октябре 1823 года он начал посещать Коллеж Людовика Великого, который представлял собой подготовительную школу. Вскоре после того, как Эварист туда поступил, учащиеся отказались петь в школьной часовне, и юный Галуа своими глазами увидел судьбу потенциальных революционеров: добрую сотню учеников немедленно исключили. К сожалению для математики, это не послужило ему уроком.

По итогам двух лет обучения он был награжден первой премией по латыни. Однако латынь вскоре стала наводить на него тоску. В результате в школе потребовали, чтобы для улучшения успеваемости он прошел курс еще раз, но это, разумеется, навело на него тоску еще большую, и ситуация изменилась от плохой к худшей. От быстрой дороги к забвению Галуа спасла математика — этот предмет был в достаточной степени интеллектуально насыщен, чтобы пробудить в нем интерес. Но не любая математика: Галуа обратился прямо к классике — Лежандровым «Элементам геометрии». Это можно до некоторой степени сравнить с тем, как если бы современный студент-физик для начала принялся за чтение технических статей Эйнштейна. Но в математике имеется некоторый пороговый эффект, интеллектуальный переломный момент. Если студент в состоянии прорваться через несколько первых препятствий, вникнуть

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату