которые царили тогда в химии и неимоверно затрудняли работу Менделеева. Достаточно сказать, что не было еще твердо проведено различие между атомом и молекулой, что еще не было уяснено до конца такое фундаментальное понятие, как валентность. Даже самое существование атомов считалось не более чем недоказанной гипотезой, и Менделееву, рассуждая об атомах, приходилось всякий раз оговариваться: «придерживаясь предположения современных последователей атомического учения». Из-за этой неопределенности основных понятий Менделеев при изучении удельных объемов вынужден был рассматривать как сложные вещества — органические и неорганические, — так и химические элементы. И что же выяснилось?

Оказалось, изоморфизм никак не связан с близостью удельных объемов, когда речь идет о сложных веществах — солях, кислотах, основаниях, спиртах, углеводородах, альдегидах. В подтверждение этого вывода Менделеев привел список изоморфных веществ с весьма далекими удельными объемами и список тел с близкими удельными объемами, но отнюдь не изоморфных. А после этого он объяснил, в чем заблуждались его иностранные коллеги: они просто принимали следствие за причину. В химии давно известны вещества, отличающиеся по химическому составу, но за всем тем дающие более или менее длинный ряд одинаковых реакции. Скажем, все кислоты окрашивают лакмусовую бумажку в красный цвет, а щелочи — в синий. Все растворы солей соляной кислоты при добавлении раствора ляписа дают белый творожистый осадок, постепенно темнеющий на свету, и так далее. Такие вещества химики назвали сходственными, и чем длиннее ряд одинаковых реакции, тем сходственнее, тем ближе вещества. Сходственность — это и есть главная причина изоморфизма, и только то, что у сходственных веществ часто бывают и близкие удельные объемы, породило заблуждение, с такой исчерпывающей полнотой объясненное Менделеевым.

Но, вычислив удельные объемы для химических элементов, Менделеев сразу обнаружил удивительные вещи. Скажем, у таких необычайно близких по химическим свойствам элементов, каковы галогены — хлор, бром, йод, — удельные объемы оказались очень близкими, а у столь же близких по свойствам щелочных металлов — лития, натрия, калия, — удельные объемы составляли почти точную пропорцию 1:2:4. И еще важное для себя открытие сделал Менделеев: у самых энергичных, бурно вступающих в реакции элементов — у галогенов и щелочных металлов — удельные объемы велики, а у малоактивных элементов, вроде иридия, платины и золота, удельные объемы, напротив, очень малы. «Чтобы дать себе некоторый отчет в этом отношении, можно представить легчайшие простые тела рыхлыми и как губка, удобопроницаемыми другими, тогда как тяжелейшие — более сдавленными, с трудом расступающимися для вмещения других элементов».

Так неожиданно вдруг обнаружилась связь между химической активностью элементов и «объемом атомов с их атмосферою»! А совершенно ясно, что эта самая «атмосфера» целиком зависит от сил сцепления… Тех самых сил сцепления, всю многозначительность и важность которых он интуитивно ощутил еще до того, как начал готовить магистерскую диссертацию об «Удельных объемах».

Изоморфизм, удельные объемы… Прочь косвенные методы! Менделеев решил атаковать проблему в лоб, непосредственным измерением узнать силы сцепления и, таким образом, «алгеброй поверить гармонию» — методами физики проникнуть в тайны сокровенной субстанции химии — в тайны вещества. И задача эта была столь деликатна, столь своеобычна, столь непроста, что для ее решения оказалась слишком примитивной лаборатория самого Бунзена, не устающего повторять: «Химик, который не есть также физик, есть ничто!»

Если, занимаясь изоморфизмом и удельными объемами, Дмитрий Иванович располагал обильным экспериментальным материалом, уже накопленным в науке трудами других, то на этот раз ему пришлось начинать почти на пустом месте. «Первое время, месяца два, — писал он в декабре 1859 года, — употребил на кучу предварительных исследовании, столь необходимых в работе, так новой для меня. Теперь уже дошел до той скорости работы, какую перейти невозможно. Средним числом для каждого тела надо три дня: день приготовить, калибровать и вычислять трубки, другой — очистить тело, третий — наблюдать капиллярность и удельный вес. Уже много органических соединении переработано мной: гомологические жирные кислоты и алкооли, эфиры, алдегиды, ароматические некоторые углеродистые водороды, глицерин, молочная кислота. Для конца работы надо еще, как оказалось теперь, определить те же данные при возвышенных температурах».

Так в декабре 1859 года была намечена программа действий, которая через несколько месяцев привела Дмитрия Ивановича к открытию температуры абсолютного кипении. Капиллярность — вползание столбика жидкости, смачивающей стенку волосной трубки, — процесс, в котором зримо проявляется действие сил сцепления. Тех самых сил сцепления, которыми дают знать о себе атомы и по которым — в этом Менделеев был убежден — можно судить о свойствах этих таинственных частичек, об их сходствах и различиях. Тайна сходств и различий элементов по-прежнему властно приковывала к себе внимание Дмитрия Ивановича.

Первые серии измерений, произведенные при комнатной температуре, не дали ожидаемых результатов, и Менделеев с некоторой досадой записал: «Выводы, каких достиг… уже, не имеют большой общности, но я надеюсь достичь этих общих результатов, надо только еще тел двадцать изучить». Наконец эти двадцать тел изучены, но ожидаемые зависимости по-прежнему ускользают от исследователя. И тогда Дмитрий Иванович решается выяснить, как влияет на капиллярность уменьшение сил сцепления в жидкости при ее нагревании. В полном соответствии с ожиданиями Менделеева столбик жидкости по мере повышения температуры опускался все ниже и ниже.

А что же произойдет при температуре, при которой высота столбика станет равной нулю и уровень жидкости в волосной трубке сравняется с уровнем в сосуде, в который трубка опущена? «В этот момент, — писал потом Дмитрий Иванович, — жидкость должна сделаться телом без сцепления… т. е. превратиться в пар». Правда, достигнуть такой температуры при атмосферном давлении не удается: жидкость начинает кипеть гораздо раньше. Но если повышать давление, не давая тем самым жидкости закипеть, опускание столбика можно довести до нулевой отметки. И о том, что эта отметка достигнута, можно узнать по мгновенному исчезновению уровня, по мгновенному превращению жидкости в пар. Пар этот мало чем отличается от жидкости: он такой же тяжелый и несжимаемый, как и она, и разница только в том, что он не может образовывать капель и уровней. Температуру, при которой происходит такая удивительная метаморфоза, Менделеев назвал температурой абсолютного кипения, и в этом названии был глубокий смысл. Если температура пара меньше температуры абсолютного кипения, то, повышая давление, его всегда можно превратить снова в жидкость. Но если пар нагрет выше этой температуры, то никаким самым высоким сжатием его невозможно превратить в жидкость, способную литься струей и создавать уровень.

Менделеев понимал, что он сделал важное открытие, что ему «совершенно неожиданно удалось… достичь общего результата, посредством которого этот совершенно до сих пор неизвестный вопрос можно считать решенным». И тем не менее он не стал разрабатывать открытую им жилу. С поразительным дли окружающих равнодушием оставляет он тему, способную у другого ученого стать делом всей жизни, и приступает к исследованию совершенно другой проблемы. Но это равнодушие объяснимо и оправданно: перед умственным взором стоила далекая и великая цель, и все, что отвлекало его внимание от этой цели, все, что не вело к ней в то время, сразу же переставало интересовать его. Однако десять лет спустя, когда найденная Менделеевым жила нашла своего исследователя в лице шотландца Т. Эндрьюса, стало ясно, как глубоко Дмитрий Иванович проник в суть вопроса, на который натолкнулся мимоходом, который не стал делом его жизни и которому он смог уделить не так уж много внимания и времени.

В 1869 году, когда Эндрюс опубликовал свои ставший классическим труд о сжимаемости углекислоты, он не достиг еще той ясности представлений, которая была у Менделеева за десять лет до этого. Так, он писал: «Если бы кто-нибудь спросил, газообразна ли она (углекислота. — Г. С.), или же находится в жидком состоянии, то думаю, что вопрос остался бы без ответа: углекислота при 35,5° и под давлением 108 атмосфер находится в состоянии среднем между газом и жидкостью, и нет достаточных оснований, чтобы приписать ей то или другое состояние предпочтительно». Менделеев живо откликнулся на работы шотландца и опубликовал в одном немецком журнале свои «Замечания по поводу работы Эндрьюса над сжимаемостью углекислоты». Он писал: «Нет никакого повода предполагать, что между жидкостью и газом существует еще нечто среднее». И затем привел подробный разбор явлений, происходящих вблизи критической температуры — так назвал Эндрюс менделеевскую температуру абсолютного кипения.

Вы читаете МЕНДЕЛЕЕВ
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату