стрелок: часовая стрелка опережает минутную на столько же, на сколько минутная продвинулась вперед от числа XII (рис. 149) – Когда это бывает?
145. По обе стороны от шести
Я взглянул на часы и заметил, что стрелки находятся по обе стороны от цифры VI и отстоят от нее одинаково. В котором часу это было?Рис. 148.
Рис. 149.Рис. 150.
146. Три и семь
Часы бьют три, т. е. делают три удара, и пока они бьют, проходят три секунды. За сколько времени часы пробьют семь?
На всякий случай предупреждаю, что эта задача – не шутка и никакой ловушки здесь нет.
147. Часы-компас
Теперь за границей не редкость карманные часы, циферблат которых разделен не на 12, а на 24 части, с обозначением от I до XXIV часов. Часовая стрелка таких часов описывает полный круг не за 12, а за 24 часа.
Рис. 151.
Такие часы можно в ясные дни использовать как компас.
Каким образом?
148. О том же
Нельзя ли, за неимением компаса, воспользоваться нашими обыкновенными карманными часами, чтобы в ясный день определять по ним, хотя бы приблизительно, страны света?
149. Цифра шесть
Спросите кого-нибудь из ваших знакомых постарше, как давно он обладает карманными часами. Положим, окажется, что часы у него уже 15 лет. Продолжайте тогда разговор примерно в таком духе:
– А сколько раз в день вы обычно смотрите на свои часы?
– Раз двадцать, вероятно, или около того, – последует ответ.
– Значит, в течение года вы смотрите на свои часы не менее 6000 раз, а за 15 лет видели их циферблат 6000 х 15, т. е. чуть ли не сто тысяч раз. Вы, конечно, знаете и отлично помните вещь, которую видели сто тысяч раз?
– Ну, разумеется!
– Вам поэтому прекрасно должен быть известен циферблат ваших карманных часов, и вы не затруднитесь изобразить на память, как обозначена на нем цифра шесть.
И вы предлагаете собеседнику бумажку и карандаш.
Он исполняет вашу просьбу, но… изображает цифру шесть в большинстве случает совсем не так, как она обозначена на его часах.
Почему? Ответьте на этот вопрос, не глядя на ваши карманные часы.
150. Тиканье часов
Положите свои карманные часы на стол, отойдите шага на три или четыре и прислушайтесь к их тиканью. Если в комнате достаточно тихо, то вы услышите, что ваши часы идут словно с перерывами: то тикают короткое время, то на несколько секунд замолкают, то снова начинают идти и т. д.
Чем объясняется такой неравномерный ход?
Решения задач 141-150
141. Начнем наблюдать за движением стрелок в XII часов. В этот момент одна стрелка покрывает другую. Так как часовая стрелка движется в 12 раз медленнее минутной (она описывает полный круг за 12 ч, а минутная за 1 ч), то в течение ближайшего часа стрелки, конечно, встретиться не могут. Но вот прошел час; часовая стрелка стоит у цифры I, сделав 1/12 долю полного оборота; минутная же сделала полный оборот и стоит у XII – на 1/12 долю круга позади часовой. Теперь условия состязания иные, чем раньше: часовая стрелка движется медленнее минутной, но она впереди, и минутная должна ее догнать. Если бы состязание длилось целый час, то за это время минутная стрелка прошла бы полный круг, а часовая – 1/12 круга, т. е. минутная сделала бы на 11/12 круга больше. Но чтобы догнать часовую стрелку, минутной нужно пройти больше, чем часовой, только на ту 1/12 долю круга, которая их отделяет. Для этого потребуется времени не целый час, а меньше во столько раз, во сколько 1/12 меньше 11/12, т. е. в 11 раз. Значит, стрелки встретятся через 1/11 ч, т. е. через 60/11
Когда же произойдет следующая встреча?
Нетрудно сообразить, что это случится через 1 час 55/11 мин, т. е. в 2 ч. 105/11 мин. Следующая – спустя еще 1 час 55/11 мин, т. е. в 3 ч 164/11 мин, и т. д. Всех встреч, как легко видеть, будет 11; последняя наступит через 11/11 × 11 = 12 ч после первой, т. е. в 12 ч; другими словами, очередная встреча стрелок совпадает с самой первой и дальнейшие встречи повторятся снова в известные моменты.
Вот полный перечень встреч:
1-я встреча – в 1 ч 55/11 мин
2-я —»-в 2» 1010/11
3-я —»-в 3» 164/11»
4-я —»-в 4» 219/11»
5-я —»-в 5» 273/11»
6-я —»-в 6» 328/11»
7-я —»-в 7» 382/11
8-я —»-в 8» 437/11»
9-я —»-в 9» 391/11»
10-я —»-в 10» 546/11»
11-я —»-в 12 ч142. Эта задача решается весьма сходно с предыдущей. Начнем опять с 12 ч, когда положение стрелок одинаково. Нужно вычислить, сколько времени потребуется для того, чтобы минутная стрелка обогнала часовую ровно на полкруга – тогда стрелки и будут направлены как раз в противоположные стороны. Мы уже знаем (см. предыдущую задачу), что в течение целого часа минутная стрелка обгоняет часовую на 11/12 полного круга; чтобы обогнать ее всего на 1/2 круга, понадобится меньше времени, чем целый час. Причем, во столько раз, во сколько 1/2 меньше 11/12,т. е. потребуется всего 6/11 ч. Значит, после 12 часов стрелки в первый раз располагаются одна против другой спустя 6/11 ч, или 328/11 мин. Взгляните на часы в противоположные стороны.
Единственный ли это момент, когда стрелки так расположены? Конечно, нет. Такое положение стрелки занимают спустя 328/11 минуты
12 ч + 328/11 мин = 12 ч 328/11 мин
1 ч 55/ мин + 328/11 мин = 1 ч 387/11 мин
2 ч 1010/11 мин + 328/11 мин = 2 ч 437/11 мин
3 ч 161/11 мин + 328/11 мин = 3 ч 491/11 мин и т. д.
Вычислить остальные моменты предоставляю вам самим.143. Если начать наблюдение за стрелками ровно в 12 часов, то в течение первого часа мы искомого расположения не заметим. Почему? Потому что часовая стрелка проходит 1/12 того, что проходит минутная, и, следовательно, отстает от нее гораздо больше, чем требуется. На какой бы угол ни отошла от XII минутная стрелка, часовая повернется на 1/12 этого угла, а не на 1/2, как нам требуется. Но вот прошел час; теперь минутная стрелка стоит у XII, часовая – у I, на 1/12 полного оборота впереди минутной. Посмотрим, не может ли такое расположение стрелок наступить в течение второго часа. Допустим, что момент этот наступил тогда, когда часовая стрелка отошла от цифры XII на долю полного оборота, которую мы обозначим через х. Минутная стрелка успела к этому времени пройти в 12 раз больше, т. е. 12 × х Если вычесть отсюда один полный оборот, то остаток 12 ×
Мы нашли одно решение задачи. Но есть и другие: стрелки в течение двенадцати часов располагаются таким же образом не один раз, а несколько. Попытаемся найти остальные решения.
Для этого дождемся двух часов; минутная стрелка стоит у XII, а часовая – у II. Рассуждая, как прежде, получаем равенство
12
откуда 2 целых оборота равны 10 ×
в 1 ч 12 мин в 7 ч 12 мин
в 2 ч 24 мин в 8 ч 24 мин
в 3 ч 36 мин в 9 ч 36 мин
в 4 ч 48 мин в 10 ч 48 мин
в 6 ч в 12 чОтветы: «в 6 часов» и «в 12 часов» могут показаться неверными, – но только с первого взгляда. Действительно, в 6 часов часовая стрелка стоит у VI, минутная – у XII, т. е. ровно вдвое дальше от начальной отметки XII (успев описать один оборот). В 12 же часов часовая стрелка удалена от XII на нуль, а минутная, если хотите, на «два нуля» (потому что двойной нуль – то же, что и нуль); значит, и этот случай, в сущности, удовлетворяет условию задачи.
144. После сделанных разъяснений решить эту задачу нетрудно. Рассуждая, как прежде, легко сообразить, что в первый раз требуемое расположение стрелок будет в тот момент, который определяется равенством
откуда 1 = 111/2 × х, или х = 1/23 целого оборота,т. е. стрелки будут расположены требуемым образом через 11/23 ч после XII, т. е. в 1 ч 214/23 мин минутная стрелка должна стоять посредине между XII и 11/23 часами, т. е. на 12/23 часа, что как раз и составляет 1/23 полного оборота (часовая стрелка к этому моменту пройдет 1/23 полного оборота). Второй раз стрелки расположатся требуемым образом в момент, который определится из равенства
откуда 2 = 111 /2 x и x = 4/23; искомый момент – 2 ч 5