нас невычислимости непременно должны присутствовать (на некоем неразличимом уровне) и в неодушевленной материи. Однако физика «обыкновенной» материи не оставляет (по крайней мере, на первый взгляд) места для такого невычислительного поведения. В дальнейшем я попытаюсь объяснить подробнее, каким образом это невычислительное поведение могло остаться незамеченным и как оно согласуется с современными наблюдениями. Пока же, думаю, будет полезно рассмотреть один феномен из уже известной физики — совершенно посторонний, но не лишенный некоторых весьма близких аналогий. Хотя данный физический феномен не связан (непосредственно, по крайней мере) с каким бы то ни было невычислительным поведением, он очень похож на наш гипотетический невычислимый ингредиент в ином отношении — его совершенно невозможно обнаружить даже при тщательном наблюдении поведения обыкновенных объектов. На соответствующем уровне он, впрочем, проявляется и, как выяснилось, коренным образом изменяет наше представление о том, как устроен мир, — по сути определяя тем самым дальнейшее направление развития науки в целом.

4.4. Эйнштейнов наклон

Со времен Исаака Ньютона и до наших дней физический феномен гравитации — вместе с замечательно точным математическим его описанием (впервые представленным Ньютоном в полном виде в 1687 году) — играет в развитии научной мысли одну из ключевых ролей. После окончательного утверждения математического аппарата гравитация могла служить (и послужила) прекрасной моделью для описания самых разных физических процессов; при этом предполагалось, что движения тел в неподвижном (плоском) опорном пространстве точно определяются действующими на эти тела силами — силами взаимного притяжения (либо отталкивания) отдельных частиц, управляющими любым движением этих частиц, вплоть до самого незначительного. Результатом выдающегося успеха ньютоновской теории тяготения стала постепенно укрепившаяся вера в то, что таким образом можно описать вообще все физические процессы, — исходя из предположения, что электрические, магнитные, молекулярные и прочие силы точно так же действуют между частицами и так же, в общем, управляют их мельчайшими движениями, как и силы гравитационные.

Некое возмущение в эту идиллическую картину внес в 1865 году великий шотландский физик Джеймс Клерк Максвелл, опубликовав свою знаменитую систему уравнений, точно описывающую поведение электрических и магнитных полей. Теперь, наряду с всевозможными дискретными частицами, пришлось признать независимое существование и этих непрерывных полей. Электромагнитное поле (как называют сегодня комбинацию двух упомянутых полей) способно осуществлять перенос энергии через в прочем отношении пустое пространство — в виде света, радиоволн, рентгеновских лучей и т.д. — и ничуть не менее реально, чем ньютоновские частицы, с которыми оно, как предполагается, сосуществует. Тем не менее, объектом общего описания и здесь остаются физические тела (к каковым теперь причисляются и непрерывные поля), движущиеся в неподвижном пространстве в результате неких взаимодействий друг с другом, т.е. в общем и целом ньютоновская схема существенных изменений не претерпела. Даже вводимая в 1913-1926 годах стараниями Нильса Бора, Вернера Гейзенберга, Эрвина Шрёдингера, Поля Дирака и др. квантовая теория, со всей ее революционностью и эксцентричностью, не изменила этого аспекта нашего физического мировоззрения. Физические объекты продолжали восприниматься как некие сущности, действующие друг на друга посредством силовых полей, причем и те, и другие пребывали все в том же неподвижном, плоском, опорном пространстве.

В годы появления первых работ в области квантовой теории Альберт Эйнштейн был занят тем, что подвергал глубокому пересмотру сами фундаментальные основы ньютоновской теории тяготения, результатом чего стала представленная им в 1915 году революционно новая теория, совершенно изменившая привычную картину мира, — речь идет, конечно же, об общей теории относительности (см. НРК, с. 202-211). Гравитация здесь вообще не является силой, ее следует представлять как своего рода искривление самого пространства (в действительности, даже пространства—времени), в которое помешаются все прочие частицы и силы.

Далеко не всем физикам эта «несообразная» картина пришлась по душе. Им не понравилось, что гравитация оказалась в таком отрыве от остальных физических воздействий, — особенно принимая во внимание тот факт, что именно гравитация послужила основой для первоначальной парадигмы, по образу и подобию которой были выстроены все более поздние физические теории. Еще одним поводом для недоверия стало то, что гравитационное взаимодействие чрезвычайно слабо — в сравнении с прочими известными физикам силами. Например, сила гравитационного притяжения между электроном и протоном в атоме водорода в 28 500 000 000 000 000 000 000 000 000 000 000 000 000 раз меньше, чем сила электрического взаимодействия между этими же частицами. То есть на уровне отдельных частиц, составляющих материю, гравитационные силы практически незаметны.

Не раз поднимался вопрос о том, не является ли гравитация своего рода остаточным эффектом, этаким последействием, возникающим, скажем, при почти полной взаимной компенсации всех сил, действующих в данной системе? (Такие силы в природе действительно существуют — например, сила Ван-дер-Ваальса, водородная связь и сила Лондона.) При таком подходе перед нами оказывается уже не самостоятельный физический феномен, отличный от всех прочих и нуждающийся поэтому в совершенно особом (отличном от описания всех прочих сил) математическом описании, — при таком подходе гравитации как таковой в действительности не существует, а существует лишь своего рода «эмергентный феномен». (Подобный взгляд на гравитацию предложил великий советский ученый и гуманист Андрей Сахаров {60}.)

Впрочем, как выяснилось позднее, такое предположение лишено оснований. Главная причина заключается в том, что гравитация воздействует на причинные связи между пространственно-временными событиями; никакая другая физическая величина такого воздействия не производит. Можно сказать иначе: гравитация обладает уникальной способностью «наклонять» световые конусы. (Вскоре я поясню, что все это означает.) Только гравитация может наклонять световые конусы, никакая другая физическая сила (равно как и никакая комбинация любых негравитационных физических воздействий) на это не способна.

Что же означает выражение «наклон светового конуса»? Что такое «причинные связи между пространственно-временными событиями»? Для объяснения этих терминов нам потребуется несколько отклониться от темы. (Это отклонение еще сослужит нам в дальнейшем хорошую службу.) Некоторые читатели, возможно, уже знакомы с соответствующими научными концепциями, поэтому я дам здесь лишь краткое описание — с тем, чтобы и остальные могли получить хоть какое-то представление о предмете. (См. также НРК, глава 5, с. 194, там все рассмотрено более подробно.) На рис. 4.1 я изобразил единичный световой конус в пространственно-временных координатах. Ось времени на рисунке направлена снизу вверх, пространство же «откладывается» по горизонтали. Точкой на пространственно- временной диаграмме отображается событие, т.е. некая точка пространства в какой-то определенный момент времени. Событие, таким образом, имеет нулевую временную продолжительность, равно как и нулевую пространственную протяженность. Полный световой конус с центром в точке-событии P представляет пространственно-временную историю сферического светового импульса, который «схлопывается» внутрь P и тут же «выплескивается» обратно, наружу; все это, разумеется, происходит со скоростью света. Таким образом, световой конус события P образуют все те лучи света, в индивидуальной истории которых событие P происходило.

Рис. 4.1. Световой конус события P составляют все те лучи света, которые в пространстве-времени проходят через событие P. Сам

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату