Далее предложим роботу рассмотреть гёделевское Π1-высказывание G(QM (M)). Робот, несомненно, проникнется неопровержимым убеждением в том, что это Π1-высказывание является следствием из обоснованности системы QM(M). Он также вполне безоговорочно поверит в то, что обоснованность системы QM(M) является следствием гипотезы M, поскольку он согласен с тем, что система QM(M) действительно содержит в себе все, в чем робот неопровержимо убежден в отношении своей способности выводить Π1-высказывания, основываясь на гипотезе M. (Он будет рассуждать следующим образом: «Если я принимаю гипотезу M, то я тем самым принимаю и все Π1-высказывания, которые порождают систему QM(M). Таким образом, я должен согласиться с тем, что система QM (M) является обоснованной на основании гипотезы M. Следовательно, на основании все той же гипотезы, я должен признать и то, что утверждение G(QM (M)) истинно».)
Однако, поверив (безоговорочно) в то, что гёделевское Π1-высказывание G(QM (M)) является следствием гипотезы M, робот вынужден будет поверить и в то, что утверждение G (QM(M)) является теоремой формальной системы QM(M). А в это он сможет поверить только в том случае, если он полагает систему QM(M) необоснованной, — что решительно противоречит принятию им гипотезы M.
В некоторых из вышеприведенных рассуждений неявно допускалось, что неопровержимая убежденность робота является действительно обоснованной, — хотя необходимо лишь, чтобы сам робот просто верил в обоснованность своей системы убеждений. Впрочем, мы изначально предполагаем, что наш робот обладает математическим пониманием, по крайней мере, на человеческом уровне, а человеческое математическое понимание, как было показано в §3.4, принципиально является обоснованным.
Возможно, кто-то усмотрит в формулировке допущения M, равно как и в определении ☆M-утверждения, некоторую неоднозначность. Смею вас уверить, что подобное утверждение, будучи Π1-высказыванием, представляет собой в высшей степени определенное математическое утверждение. Можно предположить, что большинство ☆M-утверждений робота окажутся в действительности самыми обыкновенными ☆-утверждениями, поскольку маловероятно, что робот при каких угодно обстоятельствах сочтет целесообразным прибегать в своих рассуждениях к самой гипотезе M. Исключением может стать утверждение G (Q(M)), о котором говорилось выше, так как в данном случае формальная система Q(M) выступает, с точки зрения робота, в роли гёделевской гипотетической «машины для доказательства теорем» (см. §§3.1 и 3.3). Вооружившись гипотезой M, робот получает доступ к своей собственной «машине для доказательства теорем», и, хотя он не может быть (да и, скорее всего, не будет) безоговорочно убежден в обоснованности своей «машины», робот способен предположить, что она может оказаться обоснованной, и попытаться вывести следствия уже из этого предположения.
На этом этапе робот еще не добирается до парадокса — так же, как не добрался до него и Гёдель в своих рассуждениях о человеческом интеллекте (см. цитату в §3.1). Однако, поскольку роботу доступен для исследования набор гипотетических механизмов M, а не просто отдельная формальная система Q(M), он может повторить свое рассуждение и перейти от системы Q(M) к системе QM(M), обоснованность которой он по-прежнему полагает простым следствием из гипотезы M. Именно это и приводит его в конечном итоге к противоречию (чего мы, собственно, и добивались). (См. также §3.24, где мы продолжим рассмотрение системы QM(M) и ее кажущейся связи с «парадоксальными рассуждениями».)
Вывод: ни одно обладающее сознанием и имеющее понятие о математике существо — иначе говоря, ни одно существо со способностью к подлинному математическому пониманию — не может функционировать в соответствии с каким бы то ни было набором постижимых им механизмов, вне зависимости от того, знает ли оно в действительности о том, что именно эти механизмы, предположительно, направляют его на его пути к неопровержимой математической истине. (Вспомним и о том, что «неопровержимой математической истиной» это существо полагает всего лишь то, что оно способно установить математическими методами, — т.е. с помощью «математического доказательства», причем совсем необязательно «формального».)
Если конкретнее, то на основании предшествующих рассуждений мы склонны заключить, что не существует такого постижимого роботом и не содержащего подлинно случайных компонентов набора вычислительных механизмов, какой робот мог бы принять (даже в качестве возможности) как основу своей системы математических убеждений, — при условии, что робот готов согласиться с тем, что специфическая процедура, предложенная мною для построения формальной системы Q (M) на основе механизмов M, и в самом деле охватывает всю совокупность Π1-высказываний, в истинность которых он неопровержимо верит, а также, соответственно, с тем, что формальная система QM(M) охватывает всю совокупность Π1-высказываний, которые, как он неопровержимо верит, следуют из гипотезы M. Кроме того, если мы хотим, чтобы робот смог построить собственную потенциально непротиворечивую систему математических убеждений, следует ввести в набор механизмов M какие-либо подлинно случайные составляющие.
Эти последние оговорки мы рассмотрим в последующих разделах (§§3.17- 3.22). Вопрос о введении в набор механизмов M возможных случайных элементов (вариант (c)) представляется удобным обсудить в рамках общего рассмотрения варианта (b). А для того чтобы рассмотреть вариант (b) с должной тщательностью, нам следует прежде в полной мере прояснить для себя вопрос об «убежденности» робота, который мы уже мимоходом затрагивали в конце §3.12.