6ω + 2x2 - y3 = 0, 5xy - z2 + 6 = 0, ω2 - ω + 2x - y + z - 3 = 0.

Решением первой системы является, в частности, следующее:

ω = 1, x = l, у = 2, z = 4,

тогда как вторая система вообще не имеет решения (судя по первому уравнению, число у должно быть четным, судя по второму уравнению, число z также должно быть четным, однако это противоречит третьему уравнению, причем при любом ω, поскольку значение разности ω2 - ω — это всегда четное число, а число 3 нечетно). Задача, поставленная Гильбертом, заключалась в отыскании математической процедуры (или алгоритма), позволяющей определить, какие системы диофантовых уравнений имеют решения (наш первый пример), а какие нет (второй пример). Вспомним (см. §1.5). что алгоритм — это всего лишь вычислительная процедура, действие некоторой машины Тьюринга. Таким образом, решением десятой проблемы Гильберта является некая вычислительная процедура, позволяющая определить, когда система диофантовых уравнений имеет решение.

Десятая проблема Гильберта имеет очень важное историческое значение, поскольку, сформулировав ее, Гильберт поднял вопрос, который ранее не поднимался. Каков точный математический смысл словосочетания «алгоритмическое решение для класса задач»? Если точно, то что это вообще такое — «алгоритм»? Именно этот вопрос привел в 1936 году Алана Тьюринга к его собственному определению понятия «алгоритм», основанному на изобретенных им машинах. Примерно в то же время другие математики (Черч, Клин, Гёдель, Пост и др.; см. [135]) предложили несколько иные процедуры. Как вскоре было показано, все эти процедуры оказались эквивалентными либо определению Тьюринга, либо определению Черча, хотя особый подход Тьюринга приобрел все же наибольшее влияние. (Только Тьюрингу пришла в голову идея специфической и всеобъемлющей алгоритмической машины, — названной универсальной машиной Тьюринга, — которая способна самостоятельно выполнить абсолютно любое алгоритмическое действие. Именно эта идея привела впоследствии к созданию концепции универсального компьютера, который сегодня так хорошо нам знаком.) Тьюрингу удалось показать, что существуют определенные классы задач, которые не имеют алгоритмического решения (в частности, «проблема остановки», о которой я расскажу ниже). Однако самой десятой проблеме Гильберта пришлось ждать своего решения до 1970 года, когда русский математик Юрий Матиясевич (представив доказательства, ставшие логическим завершением некоторых соображений, выдвинутых ранее американскими математиками Джулией Робинсон, Мартином Дэвисом и Хилари Патнэмом) показал невозможность создания компьютерной программы (или алгоритма), способной систематически определять, имеет ли решение та или иная система диофантовых уравнений. (См. [72] и [89], глава 6, где приводится весьма занимательное изложение этой истории.) Заметим, что в случае утвердительного ответа (т.е. когда система имеет-таки решение), этот факт, в принципе, можно констатировать с помощью особой компьютерной программы, которая самым тривиальным образом проверяет один за другим все возможные наборы целых чисел. Сколько-нибудь систематической обработке не поддается именно случай отсутствия решения. Можно, конечно, создать различные совокупности правил, которые корректно определяли бы, когда система не имеет решения (наподобие приведенного выше рассуждения с использованием четных и нечетных чисел, исключающего возможность решения второй системы), однако, как показывает теорема Матиясевича, список таких совокупностей никогда не будет полным.

Еще одним примером класса вполне структурированных математических задач, не имеющих алгоритмического решения, является задача о замощении. Она формулируется следующим образом: дан набор многоугольников, требуется определить, покрывают ли они плоскость; иными словами, возможно ли покрыть всю евклидову плоскость только этими многоугольниками без зазоров и наложений? В 1966 году американский математик Роберт Бергер показал (причем эффективно), что эта задача вычислительными средствами неразрешима. В основу его доводов легло обобщение одной из работ американского математика китайского происхождения Хао Вана, опубликованной в 1961 году (см. [176]). Надо сказать, что в моей формулировке задача оказывается несколько более громоздкой, чем хотелось бы, так как многоугольные плитки описываются в общем случае с помощью вещественных чисел (чисел, выражаемых в виде бесконечных десятичных дробей), тогда как обычные алгоритмы способны оперировать только целыми числами. От этого неудобства можно избавиться, если в качестве рассматриваемых многоугольников выбрать плитки, состоящие из нескольких квадратов, примыкающих один к другому сторонами. Такие плитки называются полиомино (см. [161]; [136], глава 13; [222]). На рис. 1.2 показаны некоторые плитки полиомино и примеры замощений ими плоскости. (Другие примеры замощений плоскости наборами плиток см. в НРК, с. 133-137, рис. 4.6-4.12.) Любопытно, что вычислительная неразрешимость задачи о замощении связана с существованием наборов полиомино, называемых апериодическими; такие наборы покрывают плоскость исключительно апериодически (т.е. так, что никакой участок законченного узора нигде не повторяется, независимо от площади покрытой плиткой плоскости). На рис. 1.3 представлен апериодический набор из трех полиомино (полученный из набора, обнаруженного Робертом Амманом в 1977 году; см. [176], рис. 10.4.11-10.4.13 на с. 555-556).

Математические доказательства неразрешимости с помощью вычислительных методов десятой проблемы Гильберта и задачи о замощении весьма сложны, и я, разумеется, не стану и пытаться приводить их здесь{13}. Центральное место в каждом из этих доказательств отводится, в сущности, тому, чтобы показать, каким образом можно запрограммировать машину Тьюринга на решение задачи о диофантовых уравнениях или задачи о замощении. В результате все сводится к вопросу, который Тьюринг рассматривал еще в своем первоначальном исследовании: к вычислительной неразрешимости проблемы остановки — проблемы определения ситуаций, в которых работа машины Тьюринга не может завершиться. В §2.3 мы приведем несколько примеров явных вычислительных процедур, которые принципиально не могут завершиться, а в §2.5 будет представлено достаточно простое доказательство — основанное, по большей части, на оригинальном доказательстве Тьюринга, — которое, помимо прочего, показывает, что проблема остановки действительно неразрешима вычислительными методами. (Что же касается следствий из того самого «прочего», ради которого, собственно, и затевалось упомянутое доказательство, то на них, в сущности, построены рассуждения всей первой части книги.)

Рис. 1.2. Плитки полиомино и замощения ими бесконечной евклидовой плоскости (допускается использование зеркально отраженных плиток). Если брать полиомино из набора (с) по отдельности, то ни одно из них не покроет всю плоскость.

Рис. 1.З. Набор из трех полиомино, покрывающий плоскость апериодически (получен из набора Роберта Аммана).

Каким же образом можно применить такой класс задач, как задачи о диофантовых уравнениях или

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату