1.8. Аналоговые вычисления

До сих пор я рассматривал «вычисление» только в том смысле, в котором этот термин применим к современным цифровым компьютерам или, точнее, к их теоретическим предшественникам — машинам Тьюринга. Существуют и другие разновидности вычислительных устройств, особенно широко распространенные в не столь отдаленном прошлом; вычислительные операции здесь осуществляются не посредством переходов между дискретными состояниями «вкл./выкл.», знакомыми нам по цифровым вычислениям, а с помощью непрерывного изменения того или иного физического параметра. Самым известным из таких устройств является логарифмическая линейка, изменяемым физическим параметром которой является линейное расстояние (между фиксированными точками на линейке). Это расстояние служит для представления логарифмов чисел, которые нужно перемножить или разделить. Существует много различных разновидностей аналоговых вычислительных устройств, в которых могут применяться и другие типы физических параметров — такие, например, как время, масса или электрический потенциал.

В случае аналоговых систем необходимо учитывать одно формальное обстоятельство: стандартные понятия вычисления и вычислимости применимы, строго говоря, только к дискретным системам (над которыми, собственно, и выполняются «цифровые» действия), но не к непрерывным, таким, например, как расстояния или электрические потенциалы, с которыми имеет дело традиционная классическая физика. Иными словами, для того чтобы применить обычные вычислительные понятия к системе, описание которой требует не дискретных (или «цифровых»), а непрерывных параметров, мы естественным образом должны прибегнуть к аппроксимации. Действительно, при компьютерном моделировании физических систем вообще стандартной процедурой является аппроксимация всех рассматриваемых непрерывных параметров в дискретной форме. Подобная процедура, однако, неминуемо вносит некоторую погрешность, величина которой определяется заданной степенью точности аппроксимации; при этом вполне возможно, что для той или иной интересующей нас физической системы заданной точности может оказаться недостаточно. В итоге дискретное компьютерное моделирование очень просто может привести нас к ошибочным выводам относительно поведения моделируемой непрерывной физической системы.

В принципе, ничто не мешает повысить точность до уровня, адекватного для моделирования рассматриваемой непрерывной системы. Однако на практике, особенно в случае хаотических систем, требуемые для этого время вычислений и объем памяти могут оказаться непомерно большими. Кроме того, можем ли мы, строго говоря, быть абсолютно уверены в том, что выбранная нами степень точности является действительно достаточной? Необходим какой-то критерий, который позволил бы нам определить, что нужный уровень точности достигнут, дальнейшего ее повышения не требуется и качественному поведению, вычисленному с такой точностью, в самом деле можно доверять. Все это поднимает ряд достаточно щекотливых математических вопросов, рассматривать которые подробно на этих страницах мне представляется не совсем уместным.

Существуют, однако, и другие подходы к проблемам вычислений в случае непрерывных систем; например, такие, в которых непрерывные системы рассматриваются как самостоятельные математические структуры со своим собственным понятием «вычислимости» — понятием, обобщающим идею вычислимости по Тьюрингу с дискретных величин на непрерывные{12}. При таком подходе исчезает необходимость в аппроксимации непрерывной системы дискретными параметрами с целью применить к ней традиционную концепцию вычислимости по Тьюрингу. Такие идеи вызывают определенный интерес с математической точки зрения; к сожалению, им, как нам представляется, не достает пока той неотразимой естественности и уникальности, которые присущи стандартному понятию вычислимости по Тьюрингу для дискретных систем. Более того, вследствие определенной непоследовательности данного подхода, формально «невычислимыми» оказываются и некоторые простые системы, в применении к которым подобная терминология выглядит как-то не совсем уместно (даже такие, например, как известное всем из физики простое «волновое уравнение»; см. [314] и НРК, с. 187-188). С другой стороны, следует упомянуть и об одной сравнительно недавней работе ([328]), в которой показано, что теоретические аналоговые компьютеры, объединяемые в некоторый достаточно обширный класс, не могут выйти за рамки обычной вычислимости по Тьюрингу. Я надеюсь, что дальнейшие исследования должным образом осветят эти безусловно интересные и важные темы. Пока же у меня нет оснований полагать, что работы в этом направлении в целом уже достигли той стадии завершенности, чтобы их результаты можно было применить к рассматриваемым здесь проблемам.

В этой книге меня в особенности занимает вопрос о вычислительной природе умственной деятельности, где термин «вычислительный» следует рассматривать в стандартном смысле вычислимости по Тьюрингу. В самом деле, компьютеры, которыми мы сегодня повседневно пользуемся, являются цифровыми, и именно это их свойство оказывается существенным для современных разработок в области ИИ. Наверное, логичным будет предположить, что в будущем может появиться «компьютер» какого-то иного типа, решающую роль в функционировании которого будут играть (пусть даже и не выходя при этом за общепринятые теоретические рамки современной физики) непрерывные физические параметры, что позволит такому компьютеру демонстрировать поведение, существенно отличное от поведения цифрового компьютера.

Как бы то ни было, все эти вопросы важны, главным образом, для проведения границы между «сильной» и «слабой» версиями позиции C. Согласно слабой версии C, поведение обладающего сознанием человеческого мозга обусловлено некоторой физической активностью, которую невозможно вычислить в стандартном смысле дискретной вычислимости по Тьюрингу, но которую можно полностью объяснить в рамках современных физических теорий. Если так, то эта активность, по всей видимости, должна зависеть от каких-то непрерывных физических параметров таким образом, чтобы ее невозможно было адекватно воспроизвести с помощью стандартных цифровых процедур. В соответствии же с сильной версией C, невычислимость сознательной деятельности мозга может быть исчерпывающе объяснена в рамках некоторой невычислительной физической теории (пока еще не открытой), следствия из которой, собственно, и обусловливают упомянутую деятельность. Хотя второй вариант может показаться несколько надуманным, альтернатива (для сторонников C) и в самом деле состоит в отыскании для какого-либо непрерывного процесса в рамках известных физических законов такой роли, которую невозможно было бы адекватно воспроизвести посредством каких угодно вычислений. На данный же момент, несомненно, следует ожидать, что для любой достоверной аналоговой системы любого типа из тех, что получили более или менее серьезное рассмотрение, обязательно окажется возможным (по крайней мере, в принципе) создать эффективную цифровую модель.

Даже если не принимать во внимание всевозможные теоретические проблемы общего плана, на сегодняшний день наибольшее превосходство перед аналоговыми вычислительными системами демонстрируют именно цифровые компьютеры. Цифровые вычисления имеют гораздо более высокую точность благодаря, в основном, тому, что при хранении данных в цифровом виде повышение точности обеспечивается простым увеличением разрядности чисел, что легко достижимо с помощью весьма скромного увеличения (логарифмического) мощности компьютера; в аналоговых же машинах (по крайней мере, в полностью аналоговых, в конструкцию которых не заложено никаких цифровых концепций) увеличения точности можно добиться лишь посредством весьма и весьма значительного увеличения (линейного) соответствующих параметров. Возможно, когда-нибудь в будущем возникнут новые идеи, которые пойдут на пользу аналоговым вычислителям, однако в рамках современной технологии большая часть существенных практических преимуществ принадлежит, по всей видимости, цифровому вычислению.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату