Рис. 5.18. Единичную окружность образуют точки, соответствующие комплексным числам z = e, где θ — вещественное число; |z| = 1.

Теперь выясним, как в таком представлении выглядят отношения комплексных чисел. Выше я уже указывал на то, что при умножении вектора состояния на ненулевое комплексное число состояние не претерпевает физических изменений (например, если помните, состояния —2|F〉 и |F〉 мы полагали физически одинаковыми). Таким образом, в общем случае, состояние |ψ〉 физически идентично состоянию u|ψ〉 при любом ненулевом комплексном u. Применительно к состоянию

|ψ〉 = w|↑〉 + z|↓〉,

умножение w и z на одно и то же ненулевое комплексное число и не приведет к какому-либо изменению физического феномена, соответствующего этому состоянию. Физически различными спиновые состояния могут быть только в том случае, если их векторы состояний характеризуются различными отношениями z : w (а при u ≠ 0 отношения uzuw и z : w равны).

Как же изобразить комплексное отношение геометрически? Существенное отличие комплексного отношения от просто комплексного числа заключается в том, что в качестве значения комплексного отношения допускается не только конечное комплексное число, но и бесконечность (обозначается символом ∞). Так, если рассматривать, в общем случае, отношение z : w как эквивалент «одиночного» комплексного числа z/w, то при w = 0 мы сталкиваемся с некоторыми, мягко говоря, затруднениями. Для того чтобы этих затруднений избежать, математики условились в случае w = 0 полагать число z/w равным бесконечности. Такая ситуация возникает, например, в состоянии «спин вниз»: |ψ〉 = z|↓〉 = 0|↑〉 + z| ↓〉. Вспомним, что нулю не могут быть равны оба коэффициента (т.е. и w, и z одновременно), поэтому случай w = 0 вполне допустим. (Мы могли бы вместо z/w взять отношение w/z, если оно по каким-либо причинам понравилось бы нам больше; тогда символ ∞ понадобился бы нам для случая z = 0, что соответствует состоянию «спин вверх». Никакой разницы между этими двумя описаниями нет.)

Пространство всех возможных комплексных отношений мы можем представить с помощью так называемой сферы Римана. Точки, образующие сферу Римана, соответствуют комплексным числам, либо ∞. Сферу Римана можно изобразить в виде единичной сферы, экваториальная плоскость которой совпадает с комплексной плоскостью, а центр располагается в точке начала координат (т.е. в нуле). Собственно экватор сферы есть не что иное, как единичная окружность на комплексной плоскости (см. рис. 5.19). Для представления какого-либо комплексного отношения, скажем, z : w, мы отмечаем на комплексной плоскости точку P, соответствующую комплексному числу p = z/w (допустим пока, что w ≠ 0), а затем проецируем эту точку P в точку P' на сфере, при этом в качестве центра проекции выбираем южный полюс S сферы. Иначе говоря, мы проводим через точки S и P прямую; там, где эта прямая пересекает сферу (кроме самой точки S), отмечаем точку P'. Такое точечное отображение плоскости на сферу называется стереографической проекцией. Сам южный полюс S при таком отображении соответствует комплексному отношению ∞. В самом деле, представим себе, что точка P комплексной плоскости удалена на очень большое расстояние от центра координат; соответствующая ей точка P' на сфере окажется при этом очень близко от полюса S — в пределе, когда модуль комплексного числа p устремляется к бесконечности, точки P' и S совпадают.

Рис. 5.19. Сфера Римана. Точка P на комплексной плоскости, соответствующая числу p = z/w, проецируется из южного полюса S на точку P' на сфере. Направление OP совпадает с направлением оси спина для общего состояния спина 1/2 (см. рис. 5.15).

Сфера Римана играет фундаментальную роль в квантовом описании систем с двумя состояниями. Эта роль не всегда очевидна, однако это не делает ее менее важной, и сфера Римана, пусть и незримо, где-то на сцене все равно присутствует. Она описывает — в абстрактном геометрическом виде — пространство всех физически достижимых состояний, которые можно получить из двух различных квантовых состояний посредством квантовой линейной суперпозиции. В качестве исходных можно взять, например, возможные состояния фотона |B〉 и |C〉. В общем случае их линейная комбинация имеет вид w|B〉 + z|C〉. В §5.7 мы подробно рассматривали только один конкретный случай |B〉 + i| C〉 (результат отражения/пропускания света, падающего на полусеребрёное зеркало), однако нетрудно реализовать и другие комбинации состояний. Для этого нужно всего лишь изменить степень «серебрёности» зеркала и поместить на пути одного из лучей что-нибудь преломляющее. Так можно набрать полную сферу Римана всевозможных альтернативных состояний, соответствующих различным физическим ситуациям вида w|B〉 + z|C〉, т.е. комбинациям двух начальных состояний | B〉 и |C〉.

Впрочем, в таких случаях геометрическая роль сферы Римана как раз и неочевидна. Однако возможны и иные ситуации, в которых целесообразность построения сферы Римана проявляется в полной мере. Самым наглядным примером такого рода является описание спиновых состояний частицы со спином 1/2 — электрона, скажем, или протона. В общем случае спиновое состояние можно записать в виде комбинации

|ψ〉 = w|↑〉 + z|↓〉;

как оказывается (при соответствующем выборе направлений ↑ и ↓ из физически эквивалентных возможных вариантов), это самое |ψ〉 представляет собой состояние правого спина (величины 1/2 ħ), направление оси которого совпадает с направлением от начала координат к точке, соответствующей отношению

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату