Утверждение (в) мы выводим из того факта, что вполне может случиться так, что мой коллега выберет в качестве ВЫБРАННОЙ вершины вершину, диаметрально противоположную моей ВЫБРАННОЙ вершине; по крайней мере, «Квинтэссенциальным Товарам» неоткуда узнать заранее, что он ее не выберет (вот она, контрфактуальность!). Таким образом, если в результате какого-либо из моих нажатий зазвенит звонок, то кнопка при диаметрально противоположной вершине додекаэдра моего коллеги (если он нажмет ее первой из трех) тоже должна быть звонком. Так должно быть вне зависимости от того, в каком порядке я решил нажимать свои собственные три кнопки, а значит (исходя из допущения об отсутствии «связи» между додекаэдрами), мы с полной уверенностью можем сказать, что «Квинтэссенциальные Товары» изначально сделали кнопку при этой конкретной вершине звонком (в каком бы порядке я ни нажимал на свои кнопки), дабы избежать противоречия со свойством (а).

Аналогичным образом, из свойства (а) выводится утверждение (г). Предположим, что обе кнопки при двух следующих соседних вершинах являются звонками. Какую бы из этих кнопок я ни нажал первой, зазвенит звонок. Предположим теперь, что ВЫБРАННОЙ вершиной я назначил вершину, соседнюю им обеим. В этом случае порядок, в котором я нажимаю на свои кнопки, уже имеет значение, что противоречит свойству (а), если ВЫБРАННАЯ вершина додекаэдра моего коллеги противоположна ВЫБРАННОЙ вершине моего додекаэдра (а уж возможность такого совпадения «Квинтэссенциальные Товары» наверняка должны были учесть).

Наконец, учитывая то, что мы уже выяснили, мы легко выведем утверждение (д) из свойства (б). Предположим, что мы с коллегой выбираем в качестве ВЫБРАННЫХ одинаково расположенные вершины своих додекаэдров. Если ни одна из моих трех кнопок, соседних с ВЫБРАННОЙ вершиной, не является звонком, то, согласно (б), звонком должна оказаться одна из трех соответствующих кнопок на додекаэдре моего коллеги. Из (а) следует, что кнопка моего додекаэдра, противоположная звонку на додекаэдре моего коллеги, также должна быть звонком. Получается (д).

А теперь, собственно, головоломка. Попробуйте окрасить каждую вершину додекаэдра в БЕЛЫЙ или ЧЕРНЫЙ цвет, строго следуя правилам (г) и (д). Очень скоро вы обнаружите, что как бы вы ни старались, ничего хорошего из этого не получается. В таком случае вот вам головоломка получше: докажите, что раскрасить вершины додекаэдра таким образом невозможно. Для того, чтобы дать всякому достаточно заинтригованному читателю шанс найти решение самостоятельно, я скромно помолчу до Приложения B, где и приведу свое (боюсь, не очень изящное) доказательство того, что подобная раскраска действительно невозможна. Может быть, кому-то из читателей придет в голову что-нибудь более остроумное.

Неужели? Неужели, впервые за миллион столетий, «Квинтэссенциальные Товары» допустили наконец ошибку? Убедившись, что раскрасить вершины моего додекаэдра в соответствии с правилами (в), (г) и (д) невозможно, и ни на секунду не забывая о величине ожидающей нас ПРЕМИИ, мы, подпрыгивая на месте от нетерпения, ждем четыре (приблизительно) долгих года, по истечении которых приходит сообщение от моего коллеги, в котором подробно описано, какие он нажимал кнопки и когда, и не звенел ли звонок в его додекаэдре. Ознакомившись с сообщением, мы впадаем в уныние, а все наши надежды на ПРЕМИЮ тают как снег в жаркий день, потому что «Квинтэссенциальные Товары» снова подтвердили свою безупречную репутацию!

Рассуждения, приведенные в Приложении B, однозначно демонстрируют, что в рамках любой классической модели просто-напросто не существует способа построить магические додекаэдры, обладающие теми свойствами, на которые «Квинтэссенциальные Товары» с такой легкостью выдают безусловную гарантию, — не существует, если исходить из допущения, что по окончании сборки два додекаэдра представляют собой абсолютно отдельные, никак не связанные друг с другом объекты. Ибо никто не в состоянии гарантировать наличие у двух додекаэдров требуемых свойств (а) и (б) без того, чтобы эти додекаэдры не были неким таинственным образом «связаны» друг с другом. По крайней мере, в тот момент, когда мы начинаем нажимать на кнопки, эта «связь» должна наличествовать — кроме того, природа ее такова, что передача сигнала на расстояние около четырех световых лет осуществляется, по всей видимости, мгновенно. И все же «Квинтэссенциальные Товары» почему-то считают для себя возможным предоставлять такие гарантии — гарантии невозможного! — и никто до сих пор не смог уличить их в ошибке.

В чем же здесь подвох? Как «Квинтэссенциальные Товары» — или «КТ», эта аббревиатура хорошо известна многим их клиентам — умудряются проделывать такие фокусы? Вы говорите, вам всегда казалось, что КТ — это квантовая теория? Пусть так, не буду спорить. Так вот, что делают «КТ» — они просто берут и подвешивают в центре каждого из наших додекаэдров по одному атому, спин которого равен 3/2, ни больше ни меньше. Эти два атома производятся на Бетельгейзе изначально вместе (общий спин пары равен 0), а затем аккуратно разделяются и помещаются в центры двух додекаэдров; общий спин связанной пары атомов при этом так и остается равным 0. (О том, что все это означает, мы поговорим в §5.10.) В результате, когда я нажимаю кнопку при одной из вершин своего додекаэдра (то же относится и к моему коллеге с его додекаэдром), производится некое измерение спина (неполное) в направлении от центра додекаэдра к данной конкретной вершине. Если результат измерения оказывается утвердительным, то звенит звонок, и через некоторое время додекаэдр рассыпается замечательным фейерверком. Более подробно о природе этого измерения я расскажу позднее (см. §5.18), а также покажу в §5.18 и Приложении B, почему правила (а) и (б) являются следствием из стандартных правил квантовой механики.

Замечательный вывод, который из всего этого следует, заключается в том, что допущение об отсутствии дальнодействующей «связи» между додекаэдрами к квантовой теории неприменимо!. На пространственно-временной диаграмме (рис. 5.5) хорошо видно, что наши с коллегой нажатия на кнопки представляют собой пространственноподобно разделенные события (см. §4.4): согласно теории относительности, никакой обмен сигналами, передающими информацию о том, какие кнопки мы нажимаем или какие кнопки (на моей или на его стороне) окажутся в действительности звонками, между нами невозможен. Квантовая же теория, напротив, вполне допускает существование некоей «связи», соединяющей наши додекаэдры через пространственноподобно разделенные события. Вообще говоря, эту «связь» нельзя использовать для передачи непосредственно «пригодной к употреблению» информации, и в этом смысле никакого операционного конфликта между специальной теорией относительности и квантовой теорией нет. Имеет место лишь конфликт с духом специальной теории относительности — что, собственно, и является превосходной иллюстрацией одной из наиболее глубоких Z-загадок квантовой теории, феномена квантовой нелокальности. Два атома в центрах наших додекаэдров образуют сцепленное состояние, и, согласно правилам стандартной квантовой теории, их нельзя считать отдельными независимыми объектами.

Рис. 5.5. Пространственно-временная диаграмма истории двух додекаэдров. Прибытие моего додекаэдра на Землю и прибытие додекаэдра моего коллеги на альфу Центавра — пространственноподобно разделенные события.

5.4. Z-загадки ЭПР-типа: экспериментальный статус

Вышеприведенный эксперимент (мысленный, конечно же) относится к классу так называемых ЭПР-измерений, впервые описанных в знаменитой статье Альберта Эйнштейна,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату