структуру, то наше общее тождество трех структур, структурное тождество, есть конгруэнция. И наконец, когда структура сама переходит в новое становление, то мы получаем при условии тождества тождество структуры при наличии новых инобытийных ее свойств. Так получаются треугольники, тождественные но структуре, но — различные в смысле абсолютных размеров. Это есть подобие, которое оказывается, таким образом, выразительно–эманативной формой тождества. Итак, существует: 1) абсолютное тождество (единичность), 2) относительное тождество (в эйдосе), 3) становящееся тождество (равенство), 4) ставшее тождество (конгруэнция), 5) выразительное, энергийное, эманативное тождество (подобие).
Так выясняется с предельной четкостью сущность и диалектическое место конгруэнции.
4. Теперь мы можем сформулировать и соответствующие геометрические аксиомы.
a) Аксиома конгруэнтности, следовательно, должна указывать на постоянное самотождество ставшего. В арифметике, где становление было арифметической операцией, а ставшее было результатом этой операции, аксиома конгруэнтности свелась на учение о самотождестве результата операции в условиях вариирования самого становления, т. е. в условиях перемены формальной структуры самих операций. Это и дало «законы счета». В геометрии мы имеем дело не со счетом, но с построением. Требуется, следовательно, утвердить самотождество результата построения, т. е. самотождество фигуры (точнее, ее структуры, поскольку речь идет о ставшем в условиях изменения формальной структуры самих построений). Имеется фигура, например прямая. Мы ее построили определенным образом, например соединили две разные точки. Переменим структуру этого построения. Сделать это в отношении столь простого геометрического образования, как прямая, можно только путем обратного процесса, соединения не точки А с точкой В, но В с А. Если при этом прямая не изменится, значит, действует аксиома конгруэнтности. Везде тут фигура как ставшее будет тождественна сама себе, как бы мы ни вели себя в сфере становления, в результате которого появилось наше ставшее.
Аксиома ставшего числового бытия в геометрии: геометрическое построение имеет своим основанием тождество направлений [своего ] становления. Другими словами, геометрическое построение зависит только от своей чисто пространственной структуры при любом инобытийном воспроизведении ее элементов.
b) В свете этой общей аксиомы, полученной чисто диалектическим путем, будет понятным и многое из того, что рассказывается в математической литературе об аксиомах конгруэнтности. Нужно сказать, что математика и здесь не выдерживает ясного принципа, то объединяя конгруэнцию с предыдущими аксиомами, то ее им противопоставляя. Гильберт, например, формулирует аксиому линейной и плоскостной конгруэнтности и не формулирует конгруэнтности для пространства, выводя ее из сочетания линейно– плоскостной конгруэнтности с аксиомами сочетания и порядка, что, конечно, абсолютно] невозможно, так как аксиомы сочетания и порядка играют в пространственной конгруэнтности ровно ту же роль, что в линейной и в плоскостной. Это можно было бы утверждать, если бы пространственная фигура вообще ничего оригинального в себе не содержала бы по сравнению с линией и плоскостью. Если применение конгруэнтности к одним из элементов, построенных на основании аксиом едино–раздельности, требует аксиоматического закрепления, то это закрепление необходимо и ко всем другим из них. Поэтому для начала лучше вообще не говорить об отдельных фигурах, а нужно говорить о фигуре вообще.
Самой общей и отвлеченной аксиомой ставшего бытия, выраженной в геометрических терминах, может служить такая.
1. Каждая геометрическая фигура конгруэнтна самой себе.
Обыкновенно говорят об отрезке, который равен самому себе, где бы мы его ни откладывали. Но, снижая это суждение до наибольшей внутренней краткости, можно сказать, что каждая геометрическая фигура просто конгруэнтна сама себе, так как для установления конгруэнтности достаточно эту линию (как выяснялось выше, в п. 2с[68]) отложить на ней же самой (для большей ясности это можно сделать с ее другого конца).
Этот общий геометрический принцип можно детализировать, как детализировали мы в § 65 аксиомы счета. Тогда его можно заменить рядом аксиоматических утверждений, из которых наиболее важны такие два.
2. Две или несколько геометрических фигур конгруэнтны между собою, если соответственно конгруэнтны их элементы.
Эта аксиома, во–первых, может являться аналогией для коммутативного и ассоциативного закона в арифметике. Если имеется линия и на ней точка, делящая эту линию в том или другом отношении, то безразлично, какую из этих обеих частей сначала откладывать на новой прямой; сумма их все равно будет конгруэнтна данной линии (коммутативный закон). Также, имея линию, разделенную на несколько частей, можно в любом порядке откладывать эти части; сумма от него не изменится (ассоциативный закон). Не требует пояснений и геометрический аналог дистрибутивного закона. Эта же аксиома охватывает и аксиому Гильберта ?? 2: «Пусть А В и ВС—два отрезка на прямой а без общих точек; далее, пусть А'В' и В'С' — два отрезка на той же или на другой прямой а' тоже без общих точек. Если при этом А В конгруэнтна А' В' и ВС, то всегда также АС конгруэнтна А'С'».
3. Две фигуры, конгруэнтные третьей, конгруэнтны между собою.
Нет нужды пояснять полнейшую аналогию этой аксиомы с общей идеей арифметической конгруэнтности, формулированной выше, в § 65.2а. Ее считает нужным ввести в число своих аксиом конгруэнтности и Гильберт.
с) Наконец, эти общие аксиомы геометрической конгруэнтности могут быть распространены и на отдельные фигуры, если иметь в виду соответствующие аксиомы едино–раздельности. Таковы аксиомы:
5. В заключение остается еще сказать несколько слов относительно связи аксиом конгруэнтности с предыдущими аксиомами. Если мы обозначим аксиомы едино–раз–дельности через А, аксиомы непрерывности через В, аксиомы конгруэнтности через С, то, минуя полную систематику всех возможных здесь геометрических комбинаций (что мы делаем во втором томе), можно покамест отметить такие четыре комбинации:
1) А, В, С,
2) А, не–В, С,
3) А, <В>, не–С,
4) А, не–В, не–С.
Что касается первой комбинации, то ясно, что она (со включением аксиомы параллельности, которую мы еще не рассматривали) есть наша обыкновенная элементарная эвклидовская геометрия.
Но что такое вторая комбинация? Может ли существовать пространство, которое подчинено аксиомам еди–но–раздельности и конгруэнтности, но не подчинено аксиомам непрерывности? Очевидно, такое построение невозможно. Допустим, что наши линии прерывны, что наше пространство не гарантирует нам возможности его заполнить и что, скажем, откладывая наш отрезок на какой–нибудь прямой, мы вдруг убеждаемся, что он разломился и внутренняя последовательность его точек прервалась. Можно ли после этого ожидать, что весь отрезок целиком уложится на прямой, где ему будет отведено такое же место, какое он занимает сам по себе? Ясно, что эти два отрезка при взаимном наложении не будут совпадать. Следовательно, геометрия, в которой нет идеи непрерывности, не может иметь и идеи конгруэнтности.
Что такое третья комбинация? Возможна ли едино–раздельная непрерывность без конгруэнтности ? Если бы она была невозможна, то конгруэнтность была бы пустым [понятием] без всякого смысла и она ничем не отличалась бы от самой непрерывности. Тут–то как раз и выясняется все своеобразие этой категории. Когда фигура непрерывна, [она] в то же время [может быть] лишена идеи конгруэнтности. Тут выясняется именно структурный характер конгруэнтности, в отличие от которой непрерывность касается только факта, становящегося факта построения, а не структуры этого построения.