суждено повторять и распространять философские и математические идеи, но не создавать их впервые» (426).

Здесь будет уместно сказать о некоторых особенностях духовного пути ?. Н. Лузина. Известно, что еще молодым человеком он пережил мировоззренческий кризис, связанный и с необходимостью выбора специальности в науке, и, главное, с ранним прикосновением к острейшим проблемам оснований математики (теоретико–множественные парадоксы, проблема континуума). Он отшатнулся от разверзшейся бездны, и даже многолетняя дружба с П. А. Флоренским не принесла облегчения. В своем отчаянном письме к нему ?. Н. Лузин писал, отрекаясь от прежних надежд: «Вы ищете бестрепетного сердца непреложной Истины, оснований всему <…>, а я… я не жду последних «как» и «почему», и, боясь бесконечного, я сторонюсь его, я не верю в него»[245]. Он обманывал себя тем, что сделался «специалистом» и «стал просто математиком» (констатации из той же переписки с П. А. Флоренским), отчего профессия его, конечно же, только выиграла: многие результаты ?. Н. Лузина вошли в классику мировой математики. Однако те самые «как» и «почему» вновь встали перед ним, «философом от математики» (лузинское самоопределение), когда он близко познакомился с А. Ф. Лосевым — «математиком от философии» (как определили бы мы). Сама жизнь подтолкнула их навстречу друг другу и как бы дополнила их автономные существа до некоего целого, пусть и на короткое время и для разрешения, может быть, одного–единственного вопроса, но зато какого: о природе бесконечного. О чем они спорили вечерами в квартирах на Арбате у Лузина или на Воздвиженке у Лосева? Для ?. Н. Лузина воистину личной и воистину уязвляющей представала «область загадок континуума», разрешить которые он хотел, положив все силы на «уничтожение идеи актуальной бесконечности». И — полный крах вместо ожидаемого триумфа[246] . Для А. Ф. Лосева идея актуальной бесконечности не только изначально близка: «бесконечность в любых ее смыслах, и в научно– математическом, и в философском смысле, была для меня подлинной реальностью, включая сюда и многие мои бытовые переживания» [247]. Она еще подлежала исчерпывающему обоснованию, которое, надо признать, удалось. Поэтому и понятно, что лосевские построения о подлинно диалектическом, иерархийном устройстве мира бесконечностей или о структуре континуума (да, сама «бесструктурность», сама «неразличимость» и «сплошность» имеет, по Лосеву, свой особый и узнаваемый лик!) выражены в столь торжественной тональности. Так разыгрывается драма идей в ее кульминационных актах.

Далее, неизбежно приходится говорить об идейном сходстве и преемстве, если в кругу современников А. Ф. Лосева выделять фигуру П. А. Флоренского и сопоставлять их творчество. Известно, например, сколь высоко А. Ф. Лосев ставил книгу «Мнимости в геометрии» (1922) и неизменное стремление ее автора к принципиальному единению философии и математики. Безусловно близкими для А. Ф. Лосева предстают пифагорейско–платоновские по своим основаниям взгляды П. А. Флоренского на природу числа (в начале 20–х годов они получили обобщение в работе «Число как форма»), а также трактовка им канторовской теории множеств (особенно показательна ранняя—1904 г. — статья «О символах бесконечности»). Сближают мыслителей и многие общие установки: предпочтение диалектики иным философским системам (откуда, к примеру, бодрое и даже деловое восприятие логических антиномий), лишенное формалистики отношение к познавательным категориям («конкретная метафизика» одного, «абсолютная мифология» другого), понимание не только мировоззренческих, но и мироустроительных функций символизма (оба — активные разработчики имяславской доктрины), готовность рассматривать любые факты и явления в единстве структурно–смысловых (Логос) и выравнивающе–десемантизирующих (Хаос) процессов. Да, их одинаково волновали именно последние «как» и «почему», мысленный взор каждого устремлялся в одну и ту же феноменологическую даль, вперялся в одну и ту же глубинную точку. Различие скорее всего пролегало на стилистическом уровне. Потому П. А. Флоренскому, засвидетельствовано, грезились «корни вещей», каковые он «решительно отличал от бесструктурной мажущейся черной массы»[248], А. Ф. Лосев прозревал «логические скрепы бытия» там, где большинству рисовалось «безумное марево» и «сплошной туман неизвестно чего»[249]. Поневоле играли свою определяющую роль очевидные несовпадения на уровне психологических особенностей этих личностей. Один, как истинный естествоиспытатель–коллекционер, больше любил разнообразие и неповторимость представших пред ним «абстракций», потому в письмах с Солов–ков, припоминая важнейшее из содеянного, П. А. Флоренский особо выделял исследования «индивидуальности чисел», свое «изучение кривых in concreto» и прилагал к письмам скрупулезно и любовно выполненные рисунки озерных водорослей — живых в такой же мере, как математические объекты, и, подобно последним, изощренно–структурных [250]. Оттого другой, прирожденный систематик и классификатор, вдохновенно строил свои «таблицы» подобно Линнею или Менделееву, потому в заметках с берегов Беломорканала (да, в лагерной изоляции, вдали от библиотек поневоле явственнее глас личностной, нутряной сути…) А. Ф. Лосев набрасывал схемы именно систем и типологий, первым делом—числовых.

Нельзя не вспомнить здесь и о фигуре В. Н. Муравьева. Он оставил яркий след в публицистике начала века, примыкая к группе авторов «Вех» и участвуя в другом знаменитом сборнике — «Из глубины», успел издать замечательную философскую работу «Овладение временем как основная задача организации труда» (1924). Однако значительная часть его творчества, остающаяся доныне не опубликованной, свидетельствует: одновременно с А. Ф. Лосевым и рядом с ним трудился мыслитель, интересы которого особенно тяготели именно к философским основаниям математики. Имя и число, ипостасийный характер учения Г. Кантора, последовательное развертывание числового принципа в диалектическом синтезе единства–множественности — вот только некоторые из тем, затронутых В. Н. Муравьевым вместе (повторим — одновременно и рядом) с А. Ф. Лосевым. Что же касается нюансов и различий в подходах к этим и подобным темам «философии числа», то их, конечно, надлежит детально обсуждать лишь после должной публикации работ В. Н. Муравьева[251]. Поэтому мы укажем разве лишь на одну примечательную перекличку. Она связана с главой «О форме бесконечности» из «Диалектических основ математики». Стилистика главы определенно тяготеет к самодостаточной округлости эссе, здесь очевидна заостренность нравственных императивов (неожиданная на фоне подчеркнуто нейтрального содержания окружающих глав) и явствен публицистический напор. Иными словами, данный текст носит «вставной» характер и невольно заставляет вспомнить о знаменитых «взрывчатых гнездах» (удачное определение С. С. Хоружего) в повествовательной структуре «Диалектики мифа». Откуда же пришло это «взрывчатое» рассуждение? «Мы изменим природу и космос» (533), — меньше всего нужно читать эту декларацию как марксистский лозунг о переделывании действительности и прежде всего нужно услышать голоса с имяславских собраний 20–х годов. Нужно прислушаться к свидетельству одного из участников таковых, который утверждал о нераздельности субъекта и объекта, мысли и действия, а потому «основной задачей имяславия» ставил «создание гармонической системы органов осуществления имен человеческих и объединение их в имени Божьем», который взывал: «Имя славие, чтобы сохранить то, чего оно достигло, должно стать Имя действием»[252].

§ 4. АКСИОМАТИКА И МЕТАМАТЕМАТИКА

Остается рассмотреть логико–математические работы А. Ф. Лосева, взяв их как целое и как некую, скажем, световую точку на оттеняющем ее фоне мировых исследований в области оснований математики. Такое рассмотрение правомерно по меньшей мере по двум причинам. Во–первых, к началу 1940–х годов, когда лосевская «философия числа» приняла известную нам форму, многое существенное в данной области уже произошло и о многом главном сам А. Ф. Лосев имел вполне ясное представление (т. е. точку на фон помещать допустимо). Уже был не только исчерпан арсенал наивно–эмпирических определений понятия числа (от Евклида до Локка), была не только создана канторовская теория множеств и вполне выявлены ее парадоксы, но и выдвинуты все основные идеи для их преодоления[253] . Почти завершился длинный и трудный путь от Principia mathematica А. Уайтхеда и Б. Рассела (1913) к «Основаниям математики» Д. Гильберта и П. Вернайса (1939), уже начиналась (в том же 1939 г.) многотомная сага Никола Бурбаки, и уже был получен основной результат К. Гёделя (1931), указующий подобным титаническим усилиям нежданно убедительный предел[254]. Во–вторых, эта проделанная целой армией мыслителей работа лишний раз убеждала самого А. Ф. Лосева в том, что подлинно философское осмысление математических материалов слишком далеко от завершения и

Вы читаете Хаос и структура
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату