тоже есть произведение ?(x) ?х, где один сомножитель есть предел, т.е. указывает на бесконечное и непрерывное становление, а другой сам находится в непрерывном движении. Если вещь из желтой становится зеленой, то ее зеленый цвет есть то новое, что мы в ней находим в результате ее изменения, т.е. в результате полученного ею «приращения». И если отмечать это приращение на прямой в виде отрезка, в конечных точках которого будут находиться оба цвета, то дифференциал здесь есть та часть этого отрезка, которая ограничена с одной стороны началом изменения желтизны, а с другой стороны — концом этого изменения и переходом в зеленое. Дифференциал нашей вещи, становящейся из желтой зеленой вещью, есть этот непрерывный, состоящий из бесконечно малых нарастаний переход от зелености этой вещи к ее желтизне, переход, взятый, однако, несмотря на свою внутреннюю процессуальность, как единое и нераздельное целое. Это и есть dy, т.е. данное специфически цветовое видоизменение нашей вещи. Но ведь наша вещь не есть зеленая вообще. Обои не просто зелены, но зелены в смысле обоев. Листья дерева не есть просто зеленость вообще, но та именно зеленость, которая специфична для листвы. Значит, если желтая ягода позеленела, если желтая окраска моря (под тем или другим действием солнечных лучей) изменилась на зеленую, то это могло произойти не только потому, что здесь появилась зеленость, но еще и потому, что появилась именно ягодная зеленость, именно морская зеленость. Другими словами, тут, рассуждая теоретически, должен также произойти переход и от зелености вообще к данной специфической зелености. Это демонстрируется остальной частью нашего отрезка, символизирующего собою «приращение» вещи, это есть ? ?х.
Тут, стало быть, два предельных перехода, один — от желтизны вообще к зелености вообще и другой—от зелености вообще к данной специфической зелености. Но предельность тут дана в обоих случаях, конечно, по–разному. В первом случае был переход от одного цвета к другому, во втором же— переход внутри одного и того же цвета. Поэтому в первом случае надо было изменять саму производную от нашей вещи, т. е. вносить изменение внутри «цвета вообще» (чтобы перейти от желтизны к зелености); отсюда и математическое выражение ?(x) ?х. Во втором же случае речь уже не может идти о модификации самой производной, так как здесь вовсе не ставится вопроса о переходе одного цвета в другой. Поскольку же, однако, здесь идет речь о переходе внутри одного и того же цвета, необходимо вместо производной брать только то, чем отличается данная цветность от цветности вообще. Отсюда и ? ?? В первом случае предел находится не вне того, что стремится к пределу, а растворен в этом стремлении (ибо «цвет вообще» одинаково свойствен и желтому, и зеленому, и всем их промежуточным отрезкам). Во втором же случае предел находится вне того, что стремится к пределу (ибо «море», «листва» и пр., взятые сами по себе, не имеют никакого отношения к зелености). Но так или иначе, в разных смыслах, а все же непрерывное и бесконечное становление пронизывает здесь оба слагаемые нашего приращения, и дифференциал, и отрезок ? ? ?, т. е. и видоразличие родового понятия, и переход от этого видоразличия к самому понятию как к родовой общности.
Значит, если анализируемое нами приращение понятия есть его определение, то дифференциал этого понятия есть его видовое различие, а произведение ? Ах есть возвращение к роду, или, говоря грубо, родовой признак. И когда математики говорят, что дифференциал функции есть главная часть ее приращения, то сейчас это делается элементарно ясным и простым: видовое различие действительно есть то главное и основное, что тут «наросло» в понятии. Если из «наращения» понятия исключить всю его про–цессуальность и всю его связанность с родовой общностью понятия, то в нем единственно только и останется само видовое различие. Все это только инфинитезимальный коррелят самого обычного формально–логического правила об определении понятия через род и вид, причем мы видим, что этот коррелят гораздо ближе к диалектическому учению об определении как об отрицании отрицания, чем к формально–логическому определению через род и вид. Впрочем, единство всех этих методов определения понятия — формально–логического, диалектического и инфинитезимального — ясно из предыдущего само собой (не хватает тут только еще одного замечательного метода современной науки, именно структурного метода определения понятия, но его наше настоящее исследование не касается).
Следовательно, здесь, так же как и в категориях производной и дифференциала, надо только уметь переходить от метода конечных изоляций, практикуемого в формальной логике, к методу бесконечно– малых, и — ясность инфинитезимальной категории обеспечивается. Погрузите в сплошное и непрерывное становление и определяемое понятие, и направление (смысл) этого определения, и то, чем вам угодно будет воспользоваться на этом общем пути становления понятия. Тогда потребуется такой же непрерывный переход и от этого произвольного отрезка на общем пути становления понятия к самому понятию. Как мы поняли в виде непрерывного становления видовые признаки понятия, так понимаем теперь непрерывно и переход от них к родовой общности вместо формально–логического механического суммирования неподвижных и взаимно изолированных видовых и родовых признаков в определяемом понятии.
8. В заключение нашего исследования логической природы дифференциала приведем геометрическое истолкование дифференциала, которое с большей наглядностью и выпуклостью оправдывает выставленную нами логическую теорию.
Вспомним наш чертеж на стр. 651. Пусть точка ? имеет своими координатами ? и у. Тогда абсциссой для М' будет ?+?? и, следовательно, отрезок MQ = ?x. Отрезок же QM' =?(x + ?x)—?(x) = ?y. Проведя касательную к кривой в точке ? до встречи ее с ординатой точки М' в точке Т, мы имеем в прямоугольном треугольнике MQT:
TQ = MQ tg<TMQ.
И поскольку тангенс угла касательной с осью абсцисс есть не что иное, как производная, то
TQ=?(x) — ?x = dy,
т.е. отрезок TQ есть дифференциал dy функции y=?(x). И таким образом, часть МТ отрезка M'Q, не хватающая до полного приращения функции, есть то самое произведение ? ?х, которое раньше мы получили аналитически.
Это геометрическое рассуждение весьма наглядно демонстрирует нам то, что мы выше сказали о логической сущности дифференциала. Дифференциал выступает здесь в виде невинного отрезка TQ. Что это за отрезок? Один его конец, точка Q, есть начало приращения функции вообще. Другой его конец есть точка пересечения касательной в точке ? и ординаты точки М'.
Что значит пересечение? Пересекаться в той или иной точке — значит отождествляться в этой точке. Что значит отождествляться нашей касательной с ординатой точки ?? Если в ? мы имеем желтый цвет и по направлению к М' он меняется, то что значит, что желтый цвет отождествился с цветом вообще (ибо касательная указывает на производную, а производная, согласно принятой у нас интерпретации, указывает на «цвет вообще»)? Если желтый цвет стал цветом вообще, это значит, он перестал быть именно желтым цветом. Значит, в точке ? желтый цвет закончился как желтый. В течение отрезка QT он менялся, т.е. он становился все менее и менее желтым. И вот в точке ? он перестал быть желтым и начал быть зеленым. Это критическая точка, которая одинаково и желтая и зеленая или, вернее, одинаково не желтая и не зеленая.
Но цветность по отрезку QM' продолжает развиваться дальше, а именно мы доходим до точки М', где наша ордината пересекается с самой кривой. И опять: так как пересечение в точке есть отождествление в этой точке, то ясно, что в точке М' зеленость в результате непрерывного изменения в течение ТМ' отождествляется с той вещью, которая выражена у нас в виде функции, т.е. в виде соответствующей точки на кривой. А в чем может отождествляться зеленость с листвой? Только в том, что она станет зеленью именно листвы. Так, если определяемое понятие есть листва, а ее видораз–личие зеленость, то ее дифференциал есть зеленость, постепенно нарастающая и взятая во всем своем нарастании как целое, как таковая. Если мы захотели бы взять ее как момент определения данного рода листвы, т. е. вместе с самой листвой, то мы должны были бы также перейти и от зелености вообще к зелености именно листвы, т. е. соединить вид с родом.
Такова простейшая логическая, и в частности формально–логическая, значимость инфинитезимальной категории дифференциала, демонстрированная при помощи самого элементарного геометрического рассуждения.
9. В заключение всего нашего исследования логической природы дифференциала можно еще раз подчеркнуть, что это понятие и живет, и падает вместе с понятием бесконечно–малого, вместе с учением о бесконечном и непрерывном становлении (как и все понятия математического анализа). Употребляя вольное выражение (а эта вольность вполне простительна после предложенных выше напряженных усилий