при высокой не окисляться, не вступать в химическую реакцию с хладагентом, не вызывать аварии, вступая в реакцию с используемым в оборудовании материалом.

В качестве одного из способов оценки стабильности охлаждающего масла проводят испытание в герметизированной жаростойкой стеклянной испытательной трубке, поместив в нее реально применяемый в компрессоре хладагент (R-12), металл (Fe, Си, А1) и масло. При испытании на герметизированной трубке используют масло 0,5 мл, хладагент R-12 0,5 мл. Положив в качестве катализатора медь и железо, нагревают с температуры 175 °C в течение 14 дней, измеряют количество R-12, разложенного из R-12.

Охлаждающее масло соприкасается с хладагентом при низкой температуре. Мало того, что желательно совместное сосуществование с хладагентом при низкой температуре, необходимо еще, чтобы оно не разлагало воск на воскообразные отложения.

Охлаждающее масло даже при низкой температуре не затвердевает, то есть имеет низкую температуру текучести и одновременно трудно разлагает осадки, и чем меньше разложение, тем предпочтительнее.

При чрезмерном рафинировании охлаждающего масла резко уменьшаются ароматические компоненты. Хотя среди ароматических компонентов вещества с плохой химической стабильностью, но если ароматические компоненты чистые, то возникает активное влияние этих компонентов на стабильность к окислению и предельное давление. Поэтому есть необходимость применения ручного способа рафинирования для сохранения указанных эффективных элементов. Таким образом, нужно выбирать масло с хорошим смазывающим свойством, чтобы даже при применении в реальной машине не возникало плавления.

1.2.5. Особые явления и их проявления

В фреоновых охлаждающих установках при запуске компрессора давление в картере резко падает, и хладагент, растворяемый в масле, начинает резко испаряться, поверхность масла начинает бурлить, возникает пена. Если это явление будет продолжаться длительное время, то из-за нарушения смазки трущихся частей может заклинить компрессор и сгореть.

При проникновении с всасывающей стороны компрессора или различных других путей большого количества масла в цилиндр из-за сжатия несжимаемого масла возникает опасность повреждения тарелки седла клапана. Кроме того, образуется недостаточность масла в картере, так как большое количество масла перейдет в различные части установки. Недостаточность масла становится причиной заклинивания компрессора.

Явление медного покрытия – когда в охлаждающих установках, применяющих хладагент фреоновой системы, медь, растворившись в масле, вместе с хладагентом циркулирует в установке, затем вновь оседает на поверхности металла и покрывает его, при этом:

• уменьшается активная часть зазора, компрессор заклинивает и становится неработоспособным;

• в установке либо много влаги, либо чем выше температура, тем легче влага появляется в цилиндре и на тарелке клапана.

Чем больше содержится молекул водорода R-22, по сравнению с R-12 и R-30 по сравнению с R-22, и чем больше элементов МАХ, тем сильнее это явление.

1.2.6. Составные части системы кондиционирования воздуха в автомобиле

На рис. 1.8 представлена блок-схема системы кондиционирования воздуха в автомобиле Kia Sportage 4 WD.

Рис. 1.8. Блок-схема системы кондиционирования воздуха в автомобиле Kia Sportage 4 WD

На рис. 1.9 приведены основные функциональные части этой системы. Разберем их по порядку.

Компрессор вращается от передачи муфты компрессора вращающегося момента шкивом коленчатого вала через приводной ремень. Если на магнитную муфту не подается напряжение, то вращается только сам шкив муфты компрессора и не вращается вал компрессора.

При подаче напряжения на магнитную муфту диск и втулка муфты перемещаются назад и соединяются со шкивом. Шкив и диск под действием сил становятся едиными и приводят во вращение вал компрессора.

Рис. 1.9. Основные функциональные части: 1 – испаритель; 2 – компрессор; 3 – ресивер; 4 – конденсатор

Компрессор в зависимости от вращающегося его вала превращает газообразное состояние хладагента низкого давления, идущего от испарителя, в газ высокой температуры и высокого давления.

Масло, перемещающееся вместе с хладагентом, играет роль смазки.

Поршень при вращении вала компрессора приводится в движение эксцентриком, в зависимости от давления выпускает соответствующее количество газа изменением хода поршня и угла поворота и перемещающегося диска.

Конденсатор устанавливается перед радиатором и выполняет функцию превращения газообразного высокотемпературного хладагента, идущего от компрессора, в жидкое состояние выделением тепла в атмосферу. Количество выделяемого хладагентом тепла в конденсаторе определяется количеством поглощенного испарителем тепла извне и работой компрессора, необходимой для сжатия газа.

Для конденсатора результат теплоотдачи прямо влияет на эффект охлаждения холодильной установки, поэтому обычно он устанавливается на самой передней части автомобиля и принудительно охлаждается воздухом вентилятора системы охлаждения двигателя и потоком воздуха, возникающим при движении автомобиля.

Хладагент, прошедший через расширительный клапан, став легкоиспаряющимся с низким давлением, при прохождении в туманообразном состоянии через патрубок испарителя, под действием потока воздуха от вентилятора, испаряясь, превращается в газ.

При этом ребра патрубка становятся холодными от теплоты парообразования, и воздух внутри автомобиля становится прохладным. Кроме того, влага, содержащаяся в воздухе, от охлаждения превращается в воду и вместе с пылью по спусковому трубопроводу выбрасывается из автомобиля.

Так как при таком теплообмене между хладагентом и воздухом используются трубопровод и ребра, нужно, чтобы на контактной поверхности с воздухом не оседали вода и пыль. Образование льда и инея на испарителе происходит также и на частях ребер. При достижении теплого воздуха до ребер, охлаждаясь ниже температуры росы, на ребрах появляются водяные капли.

При этом в случае охлаждения ребер до температуры ниже О °С возникшие водяные капли либо замерзают, либо водяные пары воздуха оседают в виде инея, заметно ухудшая характеристики системы охлаждения. Поэтому для предотвращения замерзания испарителя предусматривается управление терморегулятором или компрессором с переменным напором.

Ресивер установлен между линией выпуска испарителя и компрессора. Получая от испарителя смешанный хладагент низкого давления в жидком и газообразном состоянии и масло, газообразный хладагент отправляется непосредственно к компрессору, а жидкий хладагент попадает в компрессор после испарения от нагрева окружающим теплом. Масло возвращается к компрессору через спускное отверстие. В нижней части аккумулятора находится запечатанный осушитель, который выполняет работу по удалению влаги и примесей в системе.

Рис. 1.10. Основные части компрессора

На рис. 1.10 представлены основные части компрессора.

На рис. 1.11 приведены основные части вентилятора и конденсатора.

На рис. 1.12 даны основные части испарителя.

На рис. 1.13 и 1.14 представлен внешний вид фильтра и накопителя.

Рис. 1.11. Внешний вид вентилятора и конденсатора

Рис. 1.12. Основные части испарителя

Рис. 1.13. Вид на фильтр и накопитель

Рис. 1.14. Внешний вид на фильтр и накопитель в реальном автомобиле

1.2.7. Воздушные системы кондиционирования

При использовании воздушной системы кондиционирования получение холода обходится дороже, чем в других системах охлаждения. В значительной мере это определяется сложностью системы охлаждения, которая, в свою очередь, связана с технологическими трудностями изготовления ее агрегатов, большим числом агрегатов, их значительной стоимостью.

Особенностью кондиционеров с воздушной системой охлаждения является также необходимость больших мощностей для привода агрегатов. На рис. 1.15 представлена блок-схема воздушной системы кондиционирования воздуха.

Атмосферный воздух засасывается в систему кондиционера компрессором (3), предварительно подвергаясь очистке от пыли в фильтре (1). Осушка воздуха производится в осушителях (2), установленных перед компрессором. Производить осушку воздуха путем конденсации или вымораживания паров воды за счет глубокого расширения в холодильнике нецелесообразно, так как это связано с увеличением габаритов последнего и мощности компрессора.

Нагретый в результате сжатия в компрессоре рабочий воздух предварительно охлаждается атмосферным воздухом в воздухо-воздушном теплообменнике (4).

Рис. 1.15. Блок-схема воздушной системы

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату